首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Multisite and hierarchal protein phosphorylation.   总被引:20,自引:0,他引:20  
Multisite phosphorylation is a prevalent form of protein modification whose full implications are just beginning to be understood. Multiple protein modifications expand the repertoire of structural changes that can be elicited in proteins and permit more intricate regulatory circuits to operate.  相似文献   

3.
Autophosphorylation-triggered ubiquitination has been proposed to be the major pathway regulating cyclin E protein abundance: phosphorylation of cyclin E on T380 by its associated CDK allows binding to the receptor subunit, Fbw7, of the SCFFbw7 ubiquitin ligase. We have tested this model in vivo and found it to be an inadequate representation of the pathways that regulate cyclin E degradation. We show that assembly of cyclin E into cyclin E-Cdk2 complexes is required in vivo for turnover by the Fbw7 pathway; that Cdk2 activity is required for cyclin E turnover in vivo because it phosphorylates S384; that phosphorylation of T380 in vivo does not require Cdk2 and is mediated primarily by GSK3; and that two additional phosphorylation sites, T62 and S372, are also required for turnover. Thus, cyclin E turnover is controlled by multiple biological inputs and cannot be understood in terms of autophosphorylation alone.  相似文献   

4.
Brittis PA  Lu Q  Flanagan JG 《Cell》2002,110(2):223-235
As axons grow past intermediate targets, they change their responsiveness to guidance cues. Local upregulation of receptor expression is involved, but the mechanisms for this are not clear. Here protein synthesis is traced within individual axons by introducing RNAs encoding visualizable reporters. Individual severed axons and growth cones can translate proteins and also export them to the cell surface. As axons reach the spinal cord midline, EphA2 is among the receptors upregulated on at least some distal axon segments. Midline reporter upregulation is recapitulated by part of the EphA2 mRNA 3' untranslated region, which is highly conserved and includes known translational control sequences. These results show axons contain all the machinery for protein translation and cell surface expression, and they reveal a potentially general and flexible RNA-based mechanism for regulation localized within a subregion of the axon.  相似文献   

5.
The use of cyclosporine A (CsA) is limited by its severe nephrotoxicity that includes reversible vasoconstrictor effects and proximal tubule cell injury, the latter associated whith chronic kidney disease progression. The mechanisms of CsA-induced tubular injury, mainly on the S3 segment, have not been completely elucidated. Kidney androgen-regulated protein (KAP) is exclusively expressed in kidney proximal tubule cells, interacts with the CsA-binding protein cyclophilin B and its expression diminishes in kidneys of CsA-treated mice. Since we reported that KAP protects against CsA toxicity in cultured proximal tubule cells, we hypothesized that low KAP levels found in kidneys of CsA-treated mice might correlate with proximal tubule cell injury. To test this hypothesis, we used KAP Tg mice developed in our laboratory and showed that these mice are more resistant to CsA-induced tubular injury than control littermates. Furthermore, we found that calpain, which was activated by CsA in cell cultures and kidney, is involved in KAP degradation and observed that phosphorylation of serine and threonine residues found in KAP PEST sequences by protein kinase CK2 enhances KAP degradation by calpain. Moreover, we also observed that CK2 inhibition protected against CsA-induced cytotoxicity. These findings point to a novel mechanism for CsA-induced kidney toxicity that might be useful in developing therapeutic strategies aimed at preventing tubular cell damage while maintaining the immunosuppressive effects of CsA.  相似文献   

6.
The endoplasmic reticulum (ER)-Golgi sterol transfer activity of oxysterol-binding protein (OSBP) regulates sphingomyelin (SM) synthesis, as well as post-Golgi cholesterol efflux pathways. The phosphorylation and ER-Golgi localization of OSBP are correlated, suggesting this modification regulates the directionality and/or specificity of transfer activity. In this paper, we report that phosphorylation on two serine-rich motifs, S381-S391 (site 1) and S192, S195, S200 (site 2), specifically controls OSBP activity at the ER. A phosphomimetic of the SM/cholesterol-sensitive phosphorylation site 1 (OSBP-S5E) had increased in vitro cholesterol and 25-hydroxycholesterol-binding capacity, and cholesterol extraction from liposomes, but reduced transfer activity. Phosphatidylinositol 4-phosphate (PI(4)P) and cholesterol competed for a common binding site on OSBP; however, direct binding of PI(4)P was not affected by site 1 phosphorylation. Individual site 1 and site 2 phosphomutants supported oxysterol activation of SM synthesis in OSBP-deficient CHO cells. However, a double site1/2 mutant (OSBP-S381A/S3D) was deficient in this activity and was constitutively colocalized with vesicle-associated membrane protein-associated protein A (VAP-A) in a collapsed ER network. This study identifies phosphorylation regulation of sterol and VAP-A binding by OSBP in the ER, and PI(4)P as an alternate ligand that could be exchanged for sterol in the Golgi apparatus.  相似文献   

7.
Plk1 activation is required for progression through mitotic entry to cytokinesis. Here we show that at mitotic entry, Plk1 phosphorylates Optineurin (Optn) at serine 177 and that this dissociates Optn from the Golgi-localized GTPase Rab8, inducing its translocation into the nucleus. Mass spectrometry analysis revealed that Optn is associated with a myosin phosphatase complex (MP), which antagonizes the mitotic function of Plk1. Our data also indicate that Optn functionally connects this complex to Plk1 by promoting phosphorylation of the myosin phosphatase targeting subunit 1 (MYPT1). Accordingly, silencing Optn expression increases Plk1 activity and induces abscission failure and multinucleation, which were rescued upon expression of wild-type (WT) Optn, but not a phospho-deficient mutant (S177A) that cannot translocate into the nucleus during mitosis. Overall, these results highlight an important role of Optn in the spatial and temporal coordination of Plk1 activity.  相似文献   

8.
Multisite phosphorylation and the countdown to S phase.   总被引:7,自引:0,他引:7  
R J Deshaies  J E Ferrell 《Cell》2001,107(7):819-822
Remarkably, SCF(Cdc4) ubiquitin ligase binds and ubiquitinates Sic1 decorated with six, but not five, phosphates. This numerical wizardry suggests how analog inputs can be rectified to digital outputs. Unraveling the counting mechanism promises to generate new insights into the architecture of protein nanoprocessors.  相似文献   

9.
Phosphodiesterase 3B (PDE3B) is an important component of insulin and cAMP-dependent signalling pathways. In order to study phosphorylation of PDE3B, we have used an adenoviral system to express recombinant flag-tagged PDE3B in primary rat adipocytes and H4IIE hepatoma cells. Phosphorylation of PDE3B after treatment of cells with insulin, cAMP-increasing agents, or the phosphatase inhibitor, calyculin A was analyzed by two-dimensional tryptic phosphopeptide mapping and mass spectrometry. We found that PDE3B is multisite phosphorylated in adipocytes and H4IIE hepatoma cells in response to all these stimuli. Several sites were identified; serine (S)273, S296, S421, S424/5, S474 and S536 were phosphorylated in adipocyte as well as H4IIE hepatoma cells whereas S277 and S507 were phosphorylated in hepatoma cells only. Several of the sites were phosphorylated by insulin as well as cAMP-increasing hormones indicating integration of the two signalling pathways upstream of PDE3B, maybe at the level of protein kinase B.  相似文献   

10.
Torres E  Rosen MK 《Molecular cell》2003,11(5):1215-1227
Cells can retain information about previous stimuli to produce distinct future responses. The biochemical mechanisms by which this is achieved are not well understood. The Wiskott-Aldrich syndrome protein (WASP) is an effector of the Rho-family GTPase Cdc42, whose activation leads to stimulation of the actin nucleating assembly, Arp2/3 complex. We demonstrate that efficient phosphorylation and dephosphorylation of WASP at Y291 are both contingent on binding to activated Cdc42. Y291 phosphorylation increases the basal activity of WASP toward Arp2/3 complex and enables WASP activation by new stimuli, SH2 domains of Src-family kinases. The requirement for contingency in both phosphorylation and dephosphorylation enables long-term storage of information by WASP following decay of GTPase signals. This biochemical circuitry allows WASP to respond to the levels and timing of GTPase and kinase signals. It provides mechanisms to specifically achieve transient or persistent actin remodeling, as well as long-lasting potentiation of actin-based responses to kinases.  相似文献   

11.
The rearrangement of the Golgi apparatus during mitosis is regulated by several protein kinases, including Cdk1 and Plk1. Several peripheral Golgi proteins that dissociate from the Golgi during mitosis are implicated in regulation of cytokinesis or chromosome segregation, thereby coordinating mitotic and cytokinetic events to Golgi rearrangement. Here we show that, at the onset of mitosis, Cdk1 phosphorylates the peripheral Golgi protein Nir2 at multiple sites; of these, S382 is the most prominent. Phosphorylation of Nir2 by Cdk1 facilitates its dissociation from the Golgi apparatus, and phospho-Nir2(pS382) is localized in the cleavage furrow and midbody during cytokinesis. Mitotic phosphorylation of Nir2 is required for docking of the phospho-Ser/Thr binding module, the Polo box domain of Plk1, and overexpression of a Nir2 mutant, which fails to interact with Plk1, affects the completion of cytokinesis. These results demonstrate a mechanism for coordinating mitotic and cytokinetic events with Golgi rearrangement during cell division.  相似文献   

12.
13.
Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism   总被引:40,自引:0,他引:40  
Liu C  Li Y  Semenov M  Han C  Baeg GH  Tan Y  Zhang Z  Lin X  He X 《Cell》2002,108(6):837-847
Wnt regulation of beta-catenin degradation is essential for development and carcinogenesis. beta-catenin degradation is initiated upon amino-terminal serine/threonine phosphorylation, which is believed to be performed by glycogen synthase kinase-3 (GSK-3) in complex with tumor suppressor proteins Axin and adnomatous polyposis coli (APC). Here we describe another Axin-associated kinase, whose phosphorylation of beta-catenin precedes and is required for subsequent GSK-3 phosphorylation of beta-catenin. This "priming" kinase is casein kinase Ialpha (CKIalpha). Depletion of CKIalpha inhibits beta-catenin phosphorylation and degradation and causes abnormal embryogenesis associated with excessive Wnt/beta-catenin signaling. Our study uncovers distinct roles and steps of beta-catenin phosphorylation, identifies CKIalpha as a component in Wnt/beta-catenin signaling, and has implications to pathogenesis/therapeutics of human cancers and diabetes.  相似文献   

14.
The vesicular adenosine triphosphatase (v-ATPase) is a proton pump that acidifies intracellular compartments. In addition, mutations in components of the membrane-bound v-ATPase V0 sector cause acidification-independent defects in yeast, worm, fly, zebrafish, and mouse. In this study, we present a dual function for the neuron-specific V0 subunit a1 orthologue v100 in Drosophila melanogaster. A v100 mutant that selectively disrupts proton translocation rescues a previously characterized synaptic vesicle fusion defect and vesicle fusion with early endosomes. Correspondingly, V100 selectively interacts with syntaxins on the respective target membranes, and neither synaptic vesicles nor early endosomes require v100 for their acidification. In contrast, V100 is required for acidification once endosomes mature into degradative compartments. As a consequence of the complete loss of this neuronal degradation mechanism, photoreceptors undergo slow neurodegeneration, whereas selective rescue of the acidification-independent function accelerates cell death by increasing accumulations in degradation-incompetent compartments. We propose that V100 exerts a temporally integrated dual function that increases neuronal degradative capacity.  相似文献   

15.
16.
Recent work has shown that the light-induced PS II core protein degradation, as monitored by immunostain reduction on Western blots, was stimulated even at low light during phosphorylation of thylakoid proteins in the presence of NaF, and that the thylakoid kinase inhibitor FSBA blocked completely the light- and ATP-stimulated degradation [Georgakopoulos and Argyroudi-Akoyunoglou (1997) Photosynth Res 53: 185–195]. To assess whether D1, D2 or both proteins are degraded, antibodies raised against D1/D2, or the D-E loop of D1 were used. Greatest immunostain reduction was observed with antibodies raised against D1/D2, immunostaining a 34 kDa protein on blots of 15% polyacrylamide-6 M urea gels, suggesting that the phosphorylation-induced degradation may be mainly directed against D2. To see how protein phosphorylation might be implicated in PS II core protein degradation we further tested the effect of free radical scavengers, on thylakoid protein phosphorylation. Active oxygen scavengers like n-propyl gallate, histidine, and imidazole, shown earlier to inhibit high light-induced D1 degradation, also suppressed the phosphorylation of thylakoid proteins; on the other hand, NaN3 and D-mannitol, known to stimulate light- induced D1 degradation did not suppress protein phosphorylation, whereas superoxide dismutase and catalase, known also to inhibit high light-induced D1 degradation, did not affect thylakoid protein phosphorylation. In addition, the ATP-induced degradation was also observed in the dark under conditions of kinase activation, and in the light under anaerobic conditions, that block light-induced degradation, whereas it was reduced in the absence of NaF, the phosphatase inhibitor. The results point to the involvement of a proteolytic system in PS II core protein degradation, which is active in its phosphorylated state.  相似文献   

17.
The glycogen-binding (G) subunit of protein phosphatase-1G is phosphorylated stoichiometrically by glycogen synthase kinase-3 (GSK3), and with a greater catalytic efficiency than glycogen synthase, but only after prior phosphorylation by cyclic AMP-dependent protein kinase (A-kinase) at site 1. The residues phosphorylated are the first two serines in the sequence AIFKPGFSPQPSRRGS-, while the C-terminal serine (site 1) is one of the two residues phosphorylated by A-kinase. These findings demonstrate that (i) the G subunit undergoes multisite phosphorylation in vitro; (ii) phosphorylation by GSK3 requires the presence of a C-terminal phosphoserine residue; (iii) GSK3 can synergise with protein kinases other than casein kinase-2.  相似文献   

18.
19.
20.
The anaphase-promoting complex or cyclosome (APC/C) initiates mitotic exit by ubiquitylating cell-cycle regulators such as cyclin B1 and securin. Lys 48-linked ubiquitin chains represent the canonical signal targeting proteins for degradation by the proteasome, but they are not required for the degradation of cyclin B1. Lys 11-linked ubiquitin chains have been implicated in degradation of APC/C substrates, but the Lys 11-chain-forming E2 UBE2S is not essential for mitotic exit, raising questions about the nature of the ubiquitin signal that targets APC/C substrates for degradation. Here we demonstrate that multiple monoubiquitylation of cyclin B1, catalysed by UBCH10 or UBC4/5, is sufficient to target cyclin B1 for destruction by the proteasome. When the number of ubiquitylatable lysines in cyclin B1 is restricted, Lys 11-linked ubiquitin polymers elaborated by UBE2S become increasingly important. We therefore explain how a substrate that contains multiple ubiquitin acceptor sites confers flexibility in the requirement for particular E2 enzymes in modulating the rate of ubiquitin-dependent proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号