首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orlicky S  Tang X  Willems A  Tyers M  Sicheri F 《Cell》2003,112(2):243-256
Cell cycle progression depends on precise elimination of cyclins and cyclin-dependent kinase (CDK) inhibitors by the ubiquitin system. Elimination of the CDK inhibitor Sic1 by the SCFCdc4 ubiquitin ligase at the onset of S phase requires phosphorylation of Sic1 on at least six of its nine Cdc4-phosphodegron (CPD) sites. A 2.7 A X-ray crystal structure of a Skp1-Cdc4 complex bound to a high-affinity CPD phosphopeptide from human cyclin E reveals a core CPD motif, Leu-Leu-pThr-Pro, bound to an eight-bladed WD40 propeller domain in Cdc4. The low affinity of each CPD motif in Sic1 reflects structural discordance with one or more elements of the Cdc4 binding site. Reengineering of Cdc4 to reduce selection against Sic1 sequences allows ubiquitination of lower phosphorylated forms of Sic1. These features account for the observed phosphorylation threshold in Sic1 recognition and suggest an equilibrium binding mode between a single receptor site in Cdc4 and multiple low-affinity CPD sites in Sic1.  相似文献   

2.
In budding yeast, commitment to DNA replication during the normal cell cycle requires degradation of the cyclin-dependent kinase (CDK) inhibitor Sic1. The G1 cyclin-CDK complexes Cln1-Cdk1 and Cln2-Cdk1 initiate the process of Sic1 removal by directly catalyzing Sic1 phosphorylation at multiple sites. Commitment to DNA replication during meiosis also appears to require Sic1 degradation, but the G1 cyclin-CDK complexes are not involved. It has been proposed that the meiosis-specific protein kinase Ime2 functionally replaces the G1 cyclin-CDK complexes to promote Sic1 destruction. To investigate this possibility, we compared Cln2-Cdk1 and Ime2 protein kinase activities in vitro. Both enzyme preparations were capable of catalyzing phosphorylation of a GST-Sic1 fusion protein, but the phosphoisomers generated by the two activities had significantly different electrophoretic mobilities. Furthermore, mutation of consensus CDK phosphorylation sites in Sic1 affected Cln2-Cdk1- but not Ime2-dependent phosphorylation. Phosphoamino acid analysis and phosphopeptide mapping provided additional evidence that Cln2-Cdk1 and Ime2 targeted different residues within Sic1. Examination of other substrates both in vitro and in vivo also revealed differing specificities. These results indicate that Ime2 does not simply replace G1 cyclin-CDK complexes in promoting Sic1 degradation during meiosis.  相似文献   

3.
A hallmark of the G1/S transition in budding yeast cell cycle is the proteolytic degradation of the B-type cyclin-Cdk stoichiometric inhibitor Sic1. Deleting SIC1 or altering Sic1 degradation dynamics increases genomic instability. Certain key facts about the parts of the G1/S circuitry are established: phosphorylation of Sic1 on multiple sites is necessary for its destruction, and both the upstream kinase Cln1/2-Cdk1 and the downstream kinase Clb5/6-Cdk1 can phosphorylate Sic1 in vitro with varied specificity, cooperativity, and processivity. However, how the system works as a whole is still controversial due to discrepancies between in vitro, in vivo, and theoretical studies. Here, by monitoring Sic1 destruction in real time in individual cells under various perturbations to the system, we provide a clear picture of how the circuitry functions as a switch in vivo. We show that Cln1/2-Cdk1 sets the proper timing of Sic1 destruction, but does not contribute to its destruction speed; thus, it acts only as a trigger. Sic1''s inhibition target Clb5/6-Cdk1 controls the speed of Sic1 destruction through a double-negative feedback loop, ensuring a robust all-or-none transition for Clb5/6-Cdk1 activity. Furthermore, we demonstrate that the degradation of a single-phosphosite mutant of Sic1 is rapid and switch-like, just as the wild-type form. Our mathematical model confirms our understanding of the circuit and demonstrates that the substrate sharing between the two kinases is not a redundancy but a part of the design to overcome the trade-off between the timing and sharpness of Sic1 degradation. Our study provides direct mechanistic insight into the design features underlying the yeast G1/S switch.  相似文献   

4.
In the yeast Saccharomyces cerevisiae, Sic1, an inhibitor of Clb-Cdc28 kinases, must be phosphorylated and degraded in G1 for cells to initiate DNA replication, and Cln-Cdc28 kinase appears to be primarily responsible for phosphorylation of Sic1. The Pho85 kinase is a yeast cyclin-dependent kinase (Cdk), which is not essential for cell growth unless both CLN1 and CLN2 are absent. We demonstrate that Pho85, when complexed with Pcl1, a G1 cyclin homologue, can phosphorylate Sic1 in vitro, and that Sic1 appears to be more stable in pho85Δ cells. Three consensus Cdk phosphorylation sites present in Sic1 are phosphorylated in vivo, and two of them are required for prompt degradation of the inhibitor. Pho85 and other G1 Cdks appear to phosphorylate Sic1 at different sites in vivo. Thus at least two distinct Cdks can participate in phosphorylation of Sic1 and may therefore regulate progression through G1.  相似文献   

5.
A wide range of growth factors encode information into specific temporal patterns of MAP kinase (MAPK) and CREB phosphorylation, which are further decoded by expression of immediate early gene products (IEGs) to exert biological functions. However, the IEG decoding system remain unknown. We built a data-driven based on time courses of MAPK and CREB phosphorylation and IEG expression in response to various growth factors to identify how signal is processed. We found that IEG expression uses common decoding systems regardless of growth factors and expression of each IEG differs in upstream dependency, switch-like response, and linear temporal filters. Pulsatile ERK phosphorylation was selectively decoded by expression of EGR1 rather than c-FOS. Conjunctive NGF and PACAP stimulation was selectively decoded by synergistic JUNB expression through switch-like response to c-FOS. Thus, specific temporal patterns and combinations of MAPKs and CREB phosphorylation can be decoded by selective IEG expression via distinct temporal filters and switch-like responses. The data-driven modeling is versatile for analysis of signal processing and does not require detailed prior knowledge of pathways.  相似文献   

6.
7.
8.
The initiation of DNA replication in Saccharomyces cerevisiae depends upon the destruction of the Clb-Cdc28 inhibitor Sic1. In proliferating cells Cln-Cdc28 complexes phosphorylate Sic1, which stimulates binding of Sic1 to SCF(Cdc4) and triggers its proteosome mediated destruction. During sporulation cyclins are not expressed, yet Sic1 is still destroyed at the G1-/S-phase boundary. The Cdk (cyclin dependent kinase) sites are also required for Sic1 destruction during sporulation. Sic1 that is devoid of Cdk phosphorylation sites displays increased stability and decreased phosphorylation in vivo. In addition, we found that Sic1 was modified by ubiquitin in sporulating cells and that SCF(Cdc4) was required for this modification. The meiosis-specific kinase Ime2 has been proposed to promote Sic1 destruction by phosphorylating Sic1 in sporulating cells. We found that Ime2 phosphorylates Sic1 at multiple sites in vitro. However, only a subset of these sites corresponds to Cdk sites. The identification of multiple sites phosphorylated by Ime2 has allowed us to propose a motif for phosphorylation by Ime2 (PXS/T) where serine or threonine acts as a phospho-acceptor. Although Ime2 phosphorylates Sic1 at multiple sites in vitro, the modified Sic1 fails to bind to SCF(Cdc4). In addition, the expression of Ime2 in G1 arrested haploid cells does not promote the destruction of Sic1. These data support a model where Ime2 is necessary but not sufficient to promote Sic1 destruction during sporulation.  相似文献   

9.
A model for the regulation of CaM kinase II is presented based on the following reported properties of the molecule: 1) The holoenzyme is composed of 8-12 subunits, each with the same set of autophosphorylation sites; 2) Autophosphorylation at one group of sites (A sites) requires the presence of Ca2+ and causes a subunit to remain active following the removal of Ca2+; 3) Autophosphorylation at another group of sites (B sites) occurs only after the removal of Ca2+ but requires prior phosphorylation of a threshold number of A sites within the holoenzyme. Because B-site phosphorylation inhibits Ca2+/calmodulin binding, we propose that, for a given subunit, phosphorylation of a B site before an A site prevents subsequent phosphorylation at the A site and thereby locks that subunit in an inactive state. The model predicts that a threshold activation by Ca2+ will initiate an "autophosphorylation phase." Once started, intra-holoenzyme autophosphorylation will proceed, on A sites during periods of high [Ca2+] and on B sites during periods of low [Ca2+]. At "saturation," that is when every subunit has been phosphorylated on a B site, the number of phosphorylated A sites and, therefore, the kinase activity will reflect the relative durations of periods of high [Ca2+] to periods of low [Ca2+] that occurred during the autophosphorylation phase. Using a computer program designed to simulate the above mechanism, we show that the ultimate state of phosphorylation of an array of CaM kinase II molecules could be sensitive to the temporal pattern of Ca2+ pulses. We speculate that such a mechanism may allow arrays of CaM kinase II molecules in postsynaptic densities to act as synaptic frequency detectors involved in setting the direction and level of synaptic modification.  相似文献   

10.
The ratio of proapoptotic versus antiapoptotic Bcl-2 members is a critical determinant that plays a significant role in altering susceptibility to apoptosis. Therefore, a reduction of antiapoptotic protein levels in response to proximal signal transduction events may switch on the apoptotic pathway. In endothelial cells, tumor necrosis factor alpha (TNF-alpha) induces dephosphorylation and subsequent ubiquitin-dependent degradation of the antiapoptotic protein Bcl-2. Here, we investigate the role of different putative phosphorylation sites to facilitate Bcl-2 degradation. Mutation of the consensus protein kinase B/Akt site or of potential protein kinase C or cyclic AMP-dependent protein kinase sites does not affect Bcl-2 stability. In contrast, inactivation of the three consensus mitogen-activated protein (MAP) kinase sites leads to a Bcl-2 protein that is ubiquitinated and subsequently degraded by the 26S proteasome. Inactivation of these sites within Bcl-2 revealed that dephosphorylation of Ser87 appears to play a major role. A Ser-to-Ala substitution at this position results in 50% degradation, whereas replacement of Thr74 with Ala leads to 25% degradation, as assessed by pulse-chase studies. We further demonstrated that incubation with TNF-alpha induces dephosphorylation of Ser87 of Bcl-2 in intact cells. Furthermore, MAP kinase triggers phosphorylation of Bcl-2, whereas a reduction in Bcl-2 phosphorylation was observed in the presence of MAP kinase-specific phosphatases or the MAP kinase-specific inhibitor PD98059. Moreover, we show that oxidative stress mediates TNF-alpha-stimulated proteolytic degradation of Bcl-2 by reducing MAP kinase activity. Taken together, these results demonstrate a direct protective role for Bcl-2 phosphorylation by MAP kinase against apoptotic challenges to endothelial cells and other cells.  相似文献   

11.
Cellular changes in state can be dictated by complex all-or-nothing switches built from ultrasensitive protein kinase cascades, positive-feedback loops and other mechanisms. Recent work has established that phosphorylation-driven protein destruction through the SCF ubiquitin-ligase pathway can also occur in a switch-like manner. In this context, multiple phosphorylation events are used to set a threshold for substrate targeting, thereby providing a framework for understanding the inter-relationship between protein phosphorylation and ubiquitin-mediated proteolysis.  相似文献   

12.
Degradation of Saccharomyces cerevisiae G(1) cyclins Cln1 and Cln2 is mediated by the ubiquitin-proteasome pathway and involves the SCF E3 ubiquitin-ligase complex containing the F-box protein Grr1 (SCF(Grr1)). Here we identify the domain of Cln2 that confers instability and describe the signals in Cln2 that result in binding to Grr1 and rapid degradation. We demonstrate that mutants of Cln2 that lack a cluster of four Cdc28 consensus phosphorylation sites are highly stabilized and fail to interact with Grr1 in vivo. Since one of the phosphorylation sites lies within the Cln2 PEST motif, a sequence rich in proline, aspartate or glutamate, serine, and threonine residues found in many unstable proteins, we fused various Cln2 C-terminal domains containing combinations of the PEST and the phosphoacceptor motifs to stable reporter proteins. We show that fusion of the Cln2 domain to a stabilized form of the cyclin-dependent kinase inhibitor Sic1 (Delta N-Sic1), a substrate of SCF(Cdc4), results in degradation in a phosphorylation-dependent manner. Fusion of Cln2 degradation domains to Delta N-Sic1 switches degradation of Sic1 from SCF(Cdc4) to SCF(Grr1). Delta N-Sic1 fused with a Cln2 domain containing the PEST motif and four phosphorylation sites binds to Grr1 and is unstable and ubiquitinated in vivo. Interestingly, the phosphoacceptor domain of Cln2 binds to Grr1 but is not ubiquitinated and is stable. In summary, we have identified a small transferable domain in Cln2 that can redirect a stabilized SCF(Cdc4) target for SCF(Grr1)-mediated degradation by the ubiquitin-proteasome pathway.  相似文献   

13.
Klein P  Pawson T  Tyers M 《Current biology : CB》2003,13(19):1669-1678
BACKGROUND: The CDK inhibitor Sic1 must be phosphorylated on at least six sites in order to allow its recognition by the SCF ubiquitin ligase subunit Cdc4. However, because Cdc4 appears to have only a single phospho-epitope binding site, the apparent cooperative dependence on the number of phosphorylation sites in Sic1 cannot be accounted for by traditional thermodynamic models of cooperativity. RESULTS: We develop a general kinetic model, which predicts an unexpected multiplicative increase in affinity as a function of ligand sites. This effect, termed allovalency, derives from a high local concentration of interaction sites moving independently of each other. Modeling of this interaction by a first exit time approach indicates that the probability of ligand rebinding increases exponentially with the number of sites. This type of interaction is relatively immune to loss of any one site and may be easily tuned to any given threshold by adjusting the properties of individual sites. CONCLUSIONS: The allovalency model suggests that a previously undescribed mechanism may underlie certain cooperative interactions. The widespread occurrence of flexible polyvalent ligands in biological systems suggests that this principle may be broadly applicable.  相似文献   

14.
The ubiquitin-conjugating enzyme Cdc34 (cell division cycle 34) plays an essential role in promoting the G1-S-phase transition of the eukaryotic cell cycle and is phosphorylated in vivo. In the present study, we investigated if phosphorylation regulates Cdc34 function. We mapped the in vivo phosphorylation sites on budding yeast Cdc34 (yCdc34; Ser207 and Ser216) and human Cdc34 (hCdc34 Ser203, Ser222 and Ser231) to serine residues in the acidic tail domain, a region that is critical for Cdc34's cell cycle function. CK2 (protein kinase CK2) phosphorylates both yCdc34 and hCdc34 on these sites in vitro. CK2-mediated phosphorylation increased yCdc34 ubiquitination activity towards the yeast Saccharomyces cerevisiae Sic1 in vitro, when assayed in the presence of its cognate SCFCdc4 E3 ligase [where SCF is Skp1 (S-phase kinase-associated protein 1)/cullin/F-box]. Similarly, mutation of the yCdc34 phosphorylation sites to alanine, aspartate or glutamate residues altered Cdc34-SCFCdc4-mediated Sic1 ubiquitination activity. Similar results were obtained when yCdc34's ubiquitination activity was assayed in the absence of SCFCdc4, indicating that phosphorylation regulates the intrinsic catalytic activity of Cdc34. To evaluate the in vivo consequences of altered Cdc34 activity, wild-type yCdc34 and the phosphosite mutants were introduced into an S. cerevisiae cdc34 deletion strain and, following synchronization in G1-phase, progression through the cell cycle was monitored. Consistent with the increased ubiquitination activity in vitro, cells expressing the phosphosite mutants with higher catalytic activity exhibited accelerated cell cycle progression and Sic1 degradation. These studies demonstrate that CK2-mediated phosphorylation of Cdc34 on the acidic tail domain stimulates Cdc34-SCFCdc4 ubiquitination activity and cell cycle progression.  相似文献   

15.
To achieve mitosis and cytokinesis, microtubules must assemble into distinct structures at different stages of cell division-mitotic spindles to segregate the chromosomes before anaphase and midzones to keep sister genomes apart and guide the cleavage furrow after anaphase. This temporal regulation is believed to involve Cdk1 kinase, which is inactivated in a switch-like way after anaphase. We found that inhibiting Plk1 caused premature assembly of midzones in cells still in metaphase, breaking the temporal regulation of microtubules. The antiparallel microtubule-bundling protein PRC1 plays a key role in organizing the midzone complex. We found that Plk1 negatively regulates PRC1 through phosphorylation of a single site, Thr-602, near the C-terminus of PRC1. We also found that microtubules stimulated Thr-602 phosphorylation by Plk1. This creates a potential negative feedback loop controlling PRC1 activity. It also made the extent of Thr-602 phosphorylation during mitotic arrest dependent on the mechanism of the arresting drug. Unexpectedly, we could not detect a preanaphase regulatory role for Cdk1 sites on PRC1. We suggest that PRC1 is regulated by Plk1, rather than Cdk1 as previously proposed, because its activity must be spatiotemporally regulated both preanaphase and postanaphase, and Cdk1 activity is too binary for this purpose.  相似文献   

16.
17.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

18.
The cyclin dependent kinase inhibitor Sic1 and the cyclin Clb5 are essential regulators of the cyclindependent kinase Cdc28 during the G1 to S transition in budding yeast. Yeast enters S phase afterubiquitin-mediated degradation of Sic1, an event triggered by Cln1,2-Cdc28 mediated phosphorylation. We recently showed that Sic1 is involved in carbon source modulation of the critical cell sizerequired to enter S phase. Here we show that the amount and sub-cellular localization of Sic1 are alsocarbon source-modulated. We identify a bipartite nuclear localization sequence responsible for nuclearlocalization of Sic1 and for correct cell cycle progression in a carbon-source dependent manner.Similarly to Cip/Kip proteins ? Sic1 mammalian counterparts ? Sic1 facilitates nuclear accumulation ofits cognate cyclin, since cytoplasmic building-up of Clb5 is observed upon switching off expression ofthe SIC1 gene. Our data indicate a previously unrecognized inhibitor/activator dual role for Sic1 andput it among key molecules whose activity is regulated by their nuclear-cytoplasmic localization.  相似文献   

19.
We have previously demonstrated that the cyclin-dependent kinase inhibitor (Cki) Sic1 of Saccharomyces cerevisiae is phosphorylated in vitro by the CK2 kinase on Ser(201) residue. Moreover, we have collected evidence showing that Sic1 is functionally and structurally related to mammalian Cki p27(Kip1) and binds to the mammalian Cdk2/cyclin A complex with a similar mode of inhibition. In this paper, we use SPR analysis to investigate the binding of Sic1 to the catatytic and regulatory subunits of CK2. Evidence is presented showing that phosphorylation of Sic1 at the CK2 consensus site QES(201)EDEED increases the binding of a Sic1-derived peptide to the Cdk2/cyclin A complex, a functional homologue of the yeast Cdk1/Clb5,6. Moreover, Sic1 fully phosphorylated in vitro on Ser(201) by CK2 is shown to be a stronger inhibitor of the Cdk/cyclin complexes than the unphosphorylated protein. Taken together, these data disclose the possibility that CK2 plays a role in the regulation of Sic1 activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号