共查询到7条相似文献,搜索用时 0 毫秒
1.
Lozach PY Burleigh L Staropoli I Navarro-Sanchez E Harriague J Virelizier JL Rey FA Desprès P Arenzana-Seisdedos F Amara A 《The Journal of biological chemistry》2005,280(25):23698-23708
Dengue virus (DV) is a mosquito-borne flavivirus that causes hemorrhagic fever in humans. In the natural infection, DV is introduced into human skin by an infected mosquito vector where it is believed to target immature dendritic cells (DCs) and Langerhans cells (LCs). We found that DV productively infects DCs but not LCs. We show here that the interactions between DV E protein, the sole mannosylated glycoprotein present on DV particles, and the C-type lectin dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) are essential for DV infection of DCs. Binding of mannosylated N-glycans on DV E protein to DC-SIGN triggers a rapid and efficient internalization of the viral glycoprotein. However, we observed that endocytosis-defective DC-SIGN molecules allow efficient DV replication, indicating that DC-SIGN endocytosis is dispensable for the internalization step in DV entry. Together, these results argue in favor of a mechanism by which DC-SIGN enhances DV entry and infection in cis. We propose that DC-SIGN concentrates mosquito-derived DV particles at the cell surface to allow efficient interaction with an as yet unidentified entry factor that is ultimately responsible for DV internalization and pH-dependent fusion into DCs. 相似文献
2.
Emara M Royer PJ Mahdavi J Shakib F Ghaemmaghami AM 《The Journal of biological chemistry》2012,287(8):5756-5763
Dendritic cells (DCs) have been shown to play a key role in the initiation and maintenance of immune responses to microbial pathogens as well as to allergens, but the exact mechanisms of their involvement in allergic responses and Th2 cell differentiation have remained elusive. Using retagging, we identified DC-SIGN as a novel receptor involved in the initial recognition and uptake of the major house dust mite and dog allergens Der p 1 and Can f 1, respectively. To confirm this, we used gene silencing to specifically inhibit DC-SIGN expression by DCs followed by allergen uptake studies. Binding and uptake of Der p 1 and Can f 1 allergens was assessed by ELISA and flow cytometry. Intriguingly, our data showed that silencing DC-SIGN on DCs promotes a Th2 phenotype in DC/T cell co-cultures. These findings should lead to better understanding of the molecular basis of allergen-induced Th2 cell polarization and in doing so paves the way for the rational design of novel intervention strategies by targeting allergen receptors on innate immune cells or their carbohydrate counterstructures on allergens. 相似文献
3.
Shih-Chang Hsu Chien-Ho Chen Shih-Han Tsai Hirokazu Kawasaki Chih-Hsing Hung Yu-Te Chu Hui-Wen Chang Yufeng Zhou Jinrong Fu Beverly Plunkett Song-Nan Su Stefan Vieths Reiko T. Lee Yuan C. Lee Shau-Ku Huang 《The Journal of biological chemistry》2010,285(11):7903-7910
Fucosylated glycans on pathogens are known to shape the immune response through their interaction with pattern recognition receptors, such as C-type lectin receptors (CLRs), on dendritic cells (DCs). Similar fucosylated structures are also commonly found in a variety of allergens, but their functional significance remains unclear. To test a hypothesis that allergen-associated glycans serve as the molecular patterns in functional interaction with CLRs, an enzyme-linked immunosorbent assay-based binding assay was performed to determine the binding activity of purified allergens and allergen extracts. THP-1 cells and monocyte-derived DCs (MDDCs) were investigated as a model for testing the functional effects of allergen-CLR interaction using enzyme-linked immunosorbent assay, Western blotting, and flow cytometry. Significant and saturable bindings of allergens and allergen extracts with variable binding activities to DC-specific ICAM3-grabbing non-integrin (DC-SIGN) and its related receptor, L-SIGN, were found. These include bovine serum albumin coupled with a common glycoform (fucosylated glycan lacking the α1,3-linked mannose) of allergens and a panel of purified allergens, including BG60 (Cyn dBG-60; Bermuda grass pollen) and Der p2 (house dust mite). The binding activity was calcium-dependent and inhibitable by fucose and Lewis-x trisaccharides (Lex). In THP-1 cells and human MDDCs, BG60-DC-SIGN interaction led to the activation of Raf-1 and ERK kinases and the induction of tumor necrosis factor-α expression. This effect could be blocked, in part, by Raf-1 inhibitor or anti-DC-SIGN antibodies and was significantly reduced in cells with DC-SIGN knockdown. These results suggest that allergens are able to interact with DC-SIGN and induce tumor necrosis factor-α expression in MDDCs via, in part, Raf-1 signaling pathways. 相似文献
4.
Colmenares M Puig-Kröger A Pello OM Corbí AL Rivas L 《The Journal of biological chemistry》2002,277(39):36766-36769
5.
6.
Chen L Liu C Ko FC Xu N Ng IO Yam JW Zhu G 《The Journal of biological chemistry》2012,287(31):26104-26114
The protein deleted in liver cancer 1 (DLC1) interacts with the tensin family of focal adhesion proteins to play a role as a tumor suppressor in a wide spectrum of human cancers. This interaction has been proven to be crucial to the oncogenic inhibitory capacity and focal adhesion localization of DLC1. The phosphotyrosine binding (PTB) domain of tensin2 predominantly interacts with a novel site on DLC1, not the canonical NPXY motif. In this study, we characterized this interaction biochemically and determined the complex structure of tensin2 PTB domain with DLC1 peptide by NMR spectroscopy. Our HADDOCK-derived complex structure model elucidates the molecular mechanism by which tensin2 PTB domain recognizes DLC1 peptide and reveals a PTB-peptide binding mode that is unique in that peptide occupies the binding site opposite to the canonical NPXY motif interaction site with the peptide utilizing a non-canonical binding motif to bind in an extended conformation and that the N-terminal helix, which is unique to some Shc- and Dab-like PTB domains, is required for binding. Mutations of crucial residues defined for the PTB-DLC1 interaction affected the co-localization of DLC1 and tensin2 in cells and abolished DLC1-mediated growth suppression of hepatocellular carcinoma cells. This tensin2 PTB-DLC1 peptide complex with a novel binding mode extends the versatile binding repertoire of the PTB domains in mediating diverse cellular signaling pathways as well as provides a molecular and structural basis for better understanding the tumor-suppressive activity of DLC1 and tensin2. 相似文献
7.
Tricia A. Ulmer Vicki Keeler Sabine André Hans-Joachim Gabius Lambert Loh Suzanne Laferté 《Biochimica et Biophysica Acta (BBA)/General Subjects》2010