首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear.

Methodology/Principal Findings

We demonstrate that CREB binding protein (CBP) is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3rd trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol- treated rats.

Conclusions/Significance

These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders.  相似文献   

2.
3.
4.

Background

Previous association studies examining the relationship between the APOC1 polymorphism and susceptibility to Alzheimer’s disease (AD) have shown conflicting results, and it is not clear if an APOC1 variant acts as a genetic risk factor in AD etiology across multiple populations.

Methods

To confirm the risk association between APOC1 and AD, we designed a case-control study and also performed a meta-analysis of previously published studies.

Results

Seventy-nine patients with AD and one hundred fifty-six unrelated controls were included in case-control study. No association was found between the variation of APOC1 and AD in stage 1 of our study. However, our meta-analysis pooled a total of 2092 AD patients and 2685 controls. The APOC1 rs11568822 polymorphism was associated with increased AD risk in Caucasians, Asians and Caribbean Hispanics, but not in African Americans. APOE ε4 carriers harboring the APOC1 insertion allele, were more prevalent in AD patients than controls (χ2 = 119.46, OR = 2.79, 95% CI = 2.31–3.36, P<0.01).

Conclusions

The APOC1 insertion allele, in combination with APOE ε4, likely serves as a potential risk factor for developing AD.  相似文献   

5.

Background

Atopic dermatitis (AD) is a common chronic inflammatory skin disorder where epidermal barrier dysfunction is a major factor in the pathogenesis. The identification of AD susceptibility genes related to barrier dysfunction is therefore of importance. The epidermal transglutaminases (TGM1, TGM3 and TGM5) encodes essential cross-linking enzymes in the epidermis.

Objective

To determine whether genetic variability in the epidermal transglutaminases contributes to AD susceptibility.

Methods

Forty-seven single nucleotide polymorphisms (SNPs) in the TGM1, TGM3 and TGM5 gene region were tested for genetic association with AD, independently and in relation to FLG genotype, using a pedigree disequilibrium test (PDT) in a Swedish material consisting of 1753 individuals from 539 families. In addition, a German case-control material, consisting of 533 AD cases and 1996 controls, was used for in silico analysis of the epidermal TGM regions. Gene expression of the TGM1, TGM3 and TGM5 gene was investigated by relative quantification with Real Time PCR (qRT-PCR). Immunohistochemical (IHC) analysis was performed to detect TG1, TG3 and TG5 protein expression in the skin of patients and healthy controls.

Results

PDT analysis identified a significant association between the TGM1 SNP rs941505 and AD with allergen-specific IgE in the Swedish AD family material. However, the association was not replicated in the German case-control material. No significant association was detected for analyzed SNPs in relation to FLG genotype. TG1, TG3 and TG5 protein expression was detected in AD skin and a significantly increased TGM3 mRNA expression was observed in lesional skin by qRT-PCR.

Conclusion

Although TGM1 and TGM3 may be differentially expressed in AD skin, the results from the genetic analysis suggest that genetic variation in the epidermal transglutaminases is not an important factor in AD susceptibility.  相似文献   

6.
7.

Background

Alzheimer disease (AD) is the most common form of dementia but the identification of reliable, early and non-invasive biomarkers remains a major challenge. We present a novel miRNA-based signature for detecting AD from blood samples.

Results

We apply next-generation sequencing to miRNAs from blood samples of 48 AD patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression levels. Of these, 82 have higher and 58 have lower abundance in AD patient samples. We selected a panel of 12 miRNAs for an RT-qPCR analysis on a larger cohort of 202 samples, comprising not only AD patients and healthy controls but also patients with other CNS illnesses. These included mild cognitive impairment, which is assumed to represent a transitional period before the development of AD, as well as multiple sclerosis, Parkinson disease, major depression, bipolar disorder and schizophrenia. miRNA target enrichment analysis of the selected 12 miRNAs indicates an involvement of miRNAs in nervous system development, neuron projection, neuron projection development and neuron projection morphogenesis. Using this 12-miRNA signature, we differentiate between AD and controls with an accuracy of 93%, a specificity of 95% and a sensitivity of 92%. The differentiation of AD from other neurological diseases is possible with accuracies between 74% and 78%. The differentiation of the other CNS disorders from controls yields even higher accuracies.

Conclusions

The data indicate that deregulated miRNAs in blood might be used as biomarkers in the diagnosis of AD or other neurological diseases.  相似文献   

8.

Background

Several common genetic and environmental disease mechanisms are important for the pathophysiology behind atopic dermatitis (AD). Filaggrin (FLG) loss-of-function is of great significance for barrier impairment in AD and ichthyosis vulgaris (IV), which is commonly associated with AD. The molecular background is, however, complex and various clusters of genes are altered, including inflammatory and epidermal-differentiation genes.

Objective

The objective was to study whether the functional and molecular alterations in AD and IV skin depend directly on FLG loss-of-function, and whether FLG genotype determines the type of downstream molecular pathway affected.

Methods and Findings

Patients with AD/IV (n = 43) and controls (n = 15) were recruited from two Swedish outpatient clinics and a Swedish AD family material with known FLG genotype. They were clinically examined and their medical history recorded using a standardized questionnaire. Blood samples and punch biopsies were taken and trans-epidermal water loss (TEWL) and skin pH was assessed with standard techniques. In addition to FLG genotyping, the STS gene was analyzed to exclude X-linked recessive ichthyosis (XLI). Microarrays and quantitative real-time PCR were used to compare differences in gene expression depending on FLG genotype. Several different signalling pathways were altered depending on FLG genotype in patients suffering from AD or AD/IV. Disease severity, TEWL and pH follow FLG deficiency in the skin; and the number of altered genes and pathways are correlated to FLG mRNA expression.

Conclusions

We emphasize further the role of FLG in skin-barrier integrity and the complex compensatory activation of signalling pathways. This involves inflammation, epidermal differentiation, lipid metabolism, cell signalling and adhesion in response to FLG-dependent skin-barrier dysfunction.  相似文献   

9.

Background

Gastrointestinal neuroendocrine neoplasms (GI-NENs) are often located in the deep mucosa or submucosa, and the efficacy of endoscopic biopsy for diagnosis and treatment of GI-NENs is not fully understood.

Objective

The current study analyzed GI-NENs, especially those diagnosed pathologically and resected endoscopically, and focused on the biopsy and cold biopsy forceps polypectomy (CBP) to analyze their roles in diagnosing and treating GI-NENs.

Methods

Clinical data of all GI-NENs were reviewed from January 2006 to March 2012. Histopathology was used to diagnose GI-NENs, which were confirmed by immunohistochemistry.

Results

67.96% GI-NENs were diagnosed pathologically by endoscopy. Only 26.21% were diagnosed pathologically by biopsies before treatment. The diagnostic rate was significantly higher in polypoid (76.47%) and submucosal lesions (68.75%), than in ulcerative lesions (12.00%). However, biopsies were only taken in 56.31% patients, including 51.52% of polypoid lesions, 35.56% of submucosal lesions and 100.00% of ulcerative lesions. Endoscopic resection removed 61.76% of GI-NENs, including six by CBP, 14 by snare polypectomy with electrocauterization, 28 by endoscopic mucosal resection (EMR) and 15 by endoscopic submucosal dissection (ESD). 51.52% polypoid GI-NENs had infiltrated the submucosa under microscopic examination. CBP had a significantly higher rate of remnant (33.33%) than snare polypectomy with electrocauterization, EMR and ESD (all 0.00%).

Conclusions

Biopsies for all polypoid and submucosal lesions will improve pre-operative diagnosis. The high rate of submucosal infiltration of polypoid GI-NENs determined that CBP was inadequate in the treatment of GI-NENs. Diminutive polypoid GI-NENs that disappeared after CBP had a high risk of remnant and should be closely followed up over the long term.  相似文献   

10.

Background

Synaptic loss is a major hallmark of Alzheimer’s disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials.

Objective

To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD.

Design

A 24-week randomised, controlled, double-blind, parallel-group, multi-country study.

Participants

179 drug-naïve mild AD patients who participated in the Souvenir II study.

Intervention

Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks.

Outcome

In a secondary analysis of the Souvenir II study, electroencephalography (EEG) brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma) and global network integration (normalised characteristic path length lambda) were compared between study groups, and related to memory performance.

Results

The network measures in the beta band were significantly different between groups: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance.

Conclusions

The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG analysis, using the mathematical framework of graph theory, is useful and feasible for assessing the effects of interventions.

Trial registration

Dutch Trial Register NTR1975.  相似文献   

11.

Background

Metazoan replication-dependent histone mRNAs terminate in a conserved stem-loop structure rather than a polyA tail. Formation of this unique mRNA 3′ end requires Stem-loop Binding Protein (SLBP), which directly binds histone pre-mRNA and stimulates 3′ end processing. The 3′ end stem-loop is necessary for all aspects of histone mRNA metabolism, including replication coupling, but its importance to organism fitness and genome maintenance in vivo have not been characterized.

Methodology/Principal Findings

In Drosophila, disruption of the Slbp gene prevents normal histone pre-mRNA processing and causes histone pre-mRNAs to utilize the canonical 3′ end processing pathway, resulting in polyadenylated histone mRNAs that are no longer properly regulated. Here we show that Slbp mutants display genomic instability, including loss of heterozygosity (LOH), increased presence of chromosome breaks, tetraploidy, and changes in position effect variegation (PEV). During imaginal disc growth, Slbp mutant cells show defects in S phase and proliferate more slowly than control cells.

Conclusions/Significance

These data are consistent with a model in which changing the 3′ end of histone mRNA disrupts normal replication-coupled histone mRNA biosynthesis and alters chromatin assembly, resulting in genomic instability, inhibition of cell proliferation, and impaired development.  相似文献   

12.

Background

Retrotransposons have been extensively studied in plants and animals and have been shown to have an impact on human genome dynamics and evolution. Their ability to move within genomes gives retrotransposons to affect genome instability.

Methods

we examined the polymorphic inserted AluYa5, evolutionary young Alu, in the progesterone receptor gene to determine the effects of Alu insertion on molecular environment. We used mono-allelic inserted cell lines which carry both Alu-present and Alu-absent alleles. To determine the epigenetic change and gene expression, we performed restriction enzyme digestion, Pyrosequencing, and Chromatin Immunoprecipitation.

Results

We observed that the polymorphic insertion of evolutionally young Alu causes increasing levels of DNA methylation in the surrounding genomic area and generates inactive histone tail modifications. Consequently the Alu insertion deleteriously inactivates the neighboring gene expression.

Conclusion

The mono-allelic Alu insertion cell line clearly showed that polymorphic inserted repetitive elements cause the inactivation of neighboring gene expression, bringing aberrant epigenetic changes.  相似文献   

13.

Objectives

To investigate whether APOE ε4 carriers have higher hippocampal atrophy rates than non-carriers in Alzheimer''s disease (AD), mild cognitive impairment (MCI) and controls, and if so, whether higher hippocampal atrophy rates are still observed after adjusting for concurrent whole-brain atrophy rates.

Methods

MRI scans from all available visits in ADNI (148 AD, 307 MCI, 167 controls) were used. MCI subjects were divided into “progressors” (MCI-P) if diagnosed with AD within 36 months or “stable” (MCI-S) if a diagnosis of MCI was maintained. A joint multi-level mixed-effect linear regression model was used to analyse the effect of ε4 carrier-status on hippocampal and whole-brain atrophy rates, adjusting for age, gender, MMSE and brain-to-intracranial volume ratio. The difference in hippocampal rates between ε4 carriers and non-carriers after adjustment for concurrent whole-brain atrophy rate was then calculated.

Results

Mean adjusted hippocampal atrophy rates in ε4 carriers were significantly higher in AD, MCI-P and MCI-S (p≤0.011, all tests) compared with ε4 non-carriers. After adjustment for whole-brain atrophy rate, the difference in mean adjusted hippocampal atrophy rate between ε4 carriers and non-carriers was reduced but remained statistically significant in AD and MCI-P.

Conclusions

These results suggest that the APOE ε4 allele drives atrophy to the medial-temporal lobe region in AD.  相似文献   

14.

Background and Objective

Genes encoding RNA-binding proteins, including FUS and TDP43, play a central role in different neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Recently, a mutation located in the nuclear export signal (NES) of the FUS gene has been reported to cause an autosomal dominant form of familial Essential tremor.

Material and Methods

We sequenced the exons coding the NES domains of five RNA-binding proteins (TARDBP, hnRNPA2B1, hnRNPA1, TAF15 and EWSR1) that have been previously implicated in neurodegeneration in a series of 257 essential tremor (ET) cases and 376 healthy controls. We genotyped 404 additional ET subjects and 510 healthy controls to assess the frequency of the EWSR1 p.R471C substitution.

Results

We identified a rare EWSR1 p.R471C substitution, which is highly conserved, in a single subject with familial ET. The pathogenicity of this substitution remains equivocal, as DNA samples from relatives were not available and the genotyping of 404 additional ET subjects did not reveal any further carriers. No other variants were observed with significant allele frequency differences compared to controls in the NES coding regions.

Conclusions

The present study demonstrates that the NES domains of RNA-binding proteins are highly conserved. The role of the EWSR1 p.R471C substitution needs to be further evaluated in future studies.  相似文献   

15.
16.

Background

A number of disease-severity and quality-of-life (QoL) instruments have emerged in atopic dermatitis (AD) in the last decade.

Objectives

To identify trends in outcomes instruments used in AD clinical trials and to provide a useful summary of the dimensions and validation studies for the most commonly used measures.

Method

All randomized control trials (RCTs) from 1985 to 2010 in the treatment of AD were examined.

Results

Among the 791 RCTs reviewed, we identified 20 disease-severity and 14 QoL instruments. Of these outcomes instruments, few have been validated. SCORAD, EASI, IGA and SASSAD were the most commonly used disease-severity instruments and CDLQI, DFI, DLQI and IDQOL were the most frequently used QoL measures.

Limitations

The small number of RCTs using QoL scales makes identifying trends for QoL instruments difficult.

Conclusion

Overall, there is an increase in the use of disease-severity and QoL instruments in AD clinical trials.  相似文献   

17.
18.

Background

Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria.

Methodology/Principal Findings

We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation.

Conclusions

We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号