首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
Regulation of adiponectin secretion by endothelin-1   总被引:2,自引:0,他引:2  
Adiponectin is an adipocyte-derived hormone best known for its insulin-sensitizing ability. The expression and circulating concentration of adiponectin are decreased in type 2 diabetics and increase following treatment with thiazolidinediones. Endothelin-1 (ET-1) is a potent vasoconstrictor peptide whose levels are elevated in numerous disease states, including obesity and diabetes. ET-1 has profound effects on adipose tissue metabolism and alters the release of adipose-derived factors such as leptin and resistin, therefore we investigated the role of ET-1 in adiponectin secretion. 3T3-L1 adipocytes were treated with insulin (100 nM), ET-1 (100 nM), or the appropriate vehicle and adiponectin secretion into the media was determined by immunoblotting and densitometric analysis. Adiponectin secretion significantly increased 1h following insulin or ET-1 treatment, respectively. Pretreatment with ET-1 for 24h significantly inhibited the ability of insulin or ET-1 to acutely stimulate adiponectin secretion. The specific ET(A) receptor antagonist, BQ-610 (1 microM), significantly inhibited ET-1-stimulated adiponectin secretion. In summary, ET-1 acutely stimulates adiponectin secretion through the ET(A) receptor. Chronic exposure to ET-1 dramatically decreases the stimulatory effect of insulin and ET-1 on adiponectin secretion. Our findings suggest vascular factors such as ET-1 may play a role in the regulation of adiponectin secretion and whole body energy metabolism.  相似文献   

2.
Adiponectin is an adipokine with profound insulin-sensitizing, anti-inflammatory, and anti-atherogenic properties. Plasma levels of adiponectin are reduced in insulin resistant states such as obesity, type 2 diabetes and cardiovascular disease. However, the mechanism(s) by which adiponectin concentrations are decreased during disease development is unclear. Studies have shown that endothelin-1 (ET-1), a vasoconstrictor peptide, affects adipocyte glucose metabolism and secretion of adipokines such as leptin, resistin, and adiponectin. The goal of our study was to determine the mechanism by which ET-1 decreases adiponectin secretion. 3T3-L1 adipocytes were treated for 24h with ET-1 (10nM) and then stimulated with vehicle or insulin (100 nM) for a period of 1-2h. Chronic ET-1 (24h) treatment significantly decreased basal and insulin-stimulated adiponectin secretion by 66% and 47%, respectively. Inhibition of phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolysis by the PLCbeta inhibitor, U73122, or exogenous addition of PIP(2):histone carrier complex (1.25:0.625 microM) ameliorated the decrease in basal and insulin-stimulated adiponectin secretion observed with ET-1. However, treatment with exogenous PIP(2):histone carrier complex and the actin depolymerizing agent latrunculin B (20 microM) did not reverse the ET-1-mediated decrease in adiponectin secretion. In conclusion, we demonstrate that ET-1 inhibits basal and insulin-stimulated adiponectin secretion through PIP(2) modulation of the actin cytoskeleton.  相似文献   

3.
Adiponectin is secreted by adipose cells and mimics many metabolic actions of insulin. However, mechanisms by which adiponectin acts are poorly understood. The vascular action of insulin to stimulate endothelial production of nitric oxide (NO), leading to vasodilation and increased blood flow is an important component of insulin-stimulated whole body glucose utilization. Therefore, we hypothesized that adiponectin may also stimulate production of NO in endothelium. Bovine aortic endothelial cells in primary culture loaded with the NO-specific fluorescent dye 4,5-diaminofluorescein diacetate (DAF-2 DA) were treated with lysophosphatidic acid (LPA) (a calcium-releasing agonist) or adiponectin (10 microg/ml bacterially produced full-length adiponectin). LPA treatment increased production of NO by approximately 4-fold. Interestingly, adiponectin treatment significantly increased production of NO by approximately 3-fold. Preincubation of cells with wortmannin (phosphatidylinositol 3-kinase inhibitor) blocked only adiponectin- but not LPA-mediated production of NO. Using phospho-specific antibodies, we observed that either adiponectin or insulin treatment (but not LPA treatment) caused phosphorylation of both Akt at Ser473 and endothelial nitric-oxide synthase (eNOS) at Ser1179 that was inhibitable by wortmannin. We next transfected bovine aortic endothelial cells with dominant-inhibitory mutants of Akt (Akt-AAA) or AMP-activated protein kinase (AMPK) (AMPKK45R). Neither mutant affected production of NO in response to LPA treatment. Importantly, only AMPKK45R, but not Akt-AAA, caused a significant partial inhibition of NO production in response to adiponectin. Moreover, AMPK-K45R inhibited phosphorylation of eNOS at Ser1179 in response to adiponectin but not in response to insulin. We conclude that adiponectin has novel vascular actions to directly stimulate production of NO in endothelial cells using phosphatidylinositol 3-kinase-dependent pathways involving phosphorylation of eNOS at Ser1179 by AMPK. Thus, the effects of adiponectin to augment metabolic actions of insulin in vivo may be due, in part, to vasodilator actions of adiponectin.  相似文献   

4.
5.
Endothelin-1 (ET-1) elicits a vasoconstrictor response via ET(A) receptors, whereas simultaneous activation of ET(B) receptors triggers the release of nitric oxide (NO), which may limit the constrictor effect of ET-1. Recently, stimulation of ET(B) receptors has been shown to increase the secretion of adrenomedullin (AM), a newly identified vasorelaxing peptide. The present study was designed to see whether AM can oppose the vasoconstrictor response to ET-1. In the isolated perfused paced rat heart preparation, infusion of ET-1 at concentrations of 1 nmol/l for 30 min induced a significant coronary vasoconstriction, whereas it had no effect on perfusion pressure at a dose of 0.08 nmol/l. N(omega)-nitro-L-arginine methyl ester (L-NAME; 300 micromol/l), a potent inhibitor of NO synthase (NOS), did not change the perfusion pressure when added alone to the perfusion fluid but it unmasked the constrictor effect of ET-1 at both concentrations. In the presence of L-NAME, AM (0.03 to 1 nmol/l) markedly reversed the pressor response to ET-1 at both concentrations. Administration of AM (0.03 and 1 nmol/l) alone resulted in a dose-dependent decrease in perfusion pressure, which was not modified in the presence of L-NAME. In conclusion, the coronary vasoconstrictor response to ET-1 is markedly augmented in the presence of a NOS inhibitor. This constrictor response is substantially reversed by AM. Our results indicate that AM may serve as a paracrine modulator of ET-1-induced vasoconstriction independently of the NO pathway.  相似文献   

6.
Smith SA 《Biochimie》2003,85(12):1219-1230
Insulin resistance is a key metabolic defect in type 2 diabetes that is exacerbated by obesity, especially if the excess adiposity is located intra-abdominally/centrally. Insulin resistance underpins many metabolic abnormalities-collectively known as the insulin resistance syndrome-that accelerate the development of cardiovascular disease. Thiazolidinedione anti-diabetic agents improve glycaemic control by activating the nuclear receptor peroxisome proliferator activated receptor-gamma (PPARgamma). This receptor is highly expressed in adipose tissues. In insulin resistant fat depots, thiazolidinediones increase pre-adipocyte differentiation and oppose the actions of pro-inflammatory cytokines such as tumour necrosis factor-alpha. The metabolic consequences are enhanced insulin signalling, resulting in increased glucose uptake and lipid storage coupled with reduced release of free fatty acids (FFA) into the circulation. Metabolic effects of PPARgamma activation are depot specific-in people with type 2 diabetes central fat mass is reduced and subcutaneous depots are increased. Thiazolidinediones increase insulin sensitivity in liver and skeletal muscle as well as in fat, but they do not express high levels of PPARgamma, suggesting that improvement in insulin action is indirect. Reduced FFA availability from adipose tissues to liver and skeletal muscle is a pivotal component of the insulin-sensitising mechanism in these latter two tissues. Adipocytes secrete multiple proteins that may both regulate insulin signalling and impact on abnormalities of the insulin resistance syndrome--this may explain the link between central obesity and cardiovascular disease. Of these proteins, low plasma adiponectin is associated with insulin resistance and atherosclerosis--thiazolidinediones increase adipocyte adiponectin production. Like FFA, adiponectin is probably an important signalling molecule regulating insulin sensitivity in muscle and liver. Adipocyte production of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, and angiotensin II secretion are partially corrected by PPARgamma activation. The favourable modification of adipocyte-derived cardiovascular risk factors by thiazolidinediones suggests that these agents may reduce cardiovascular disease as well as provide durable glycaemic control in type 2 diabetes.  相似文献   

7.
Adiponectin is an abundantly expressed adipokine in adipose tissue and has direct insulin sensitizing activity. A decrease in the circulating levels of adiponectin by interactions between genetic factors and environmental factors causing obesity has been shown to contribute to the development of insulin resistance, type 2 diabetes, metabolic syndrome and atherosclerosis. In addition to its insulin sensitizing actions, adiponectin has central actions in the regulation of energy homeostasis. Adiponectin enhances AMP-activated protein kinase activity in the arcuate hypothalamus via its receptor AdipoR1 to stimulate food intake and decreases energy expenditure. We propose a hypothesis on the physiological role of adiponectin: a starvation gene in the course of evolution by promoting fat storage on facing the loss of adiposity.  相似文献   

8.
Endothelin-1 inhibits resistin secretion in 3T3-L1 adipocytes   总被引:7,自引:0,他引:7  
Resistin is an adipocyte-derived hormone whose role in the development of insulin resistance is controversial. Endothelin-1 (ET-1) is a 21 amino acid peptide demonstrated to possess vasoconstrictor, positive inotropic, mitogenic, and metabolic properties. In numerous disease states, including congestive heart failure, obesity, and diabetes, elevated levels of ET-1 have been reported and are thought to contribute to the pathology of the disease. A recent study demonstrated that ET-1 induces the expression and stimulates the secretion of the adipose tissue-derived hormone leptin. However, the effect of ET-1 on resistin secretion has not been determined. To characterize the effect of ET-1 on resistin secretion, 3T3-L1 fibroblasts were differentiated into adipocytes and allowed to mature for 14 days. Cells were incubated for 24h with ET-1 (1-100 nM), insulin (1-100 nM), insulin+ET-1 (100 nM I+E) or the appropriate vehicle or antagonist. At the end of the incubation period, resistin secretion was determined in the media by immunoblotting and densitometric analysis. ET-1 (1-100 nM) significantly decreased basal resistin secretion by 49% (1 nM), 43% (10nM), and 59% (100 nM). Insulin (1-100 nM) produced a concentration-dependent increase in resistin secretion from 3T3-L1 adipocytes (1 nM-42%, 10nM-55%, and 100 nM-86% vs. control). Insulin-stimulated resistin secretion (100 nM) was almost completely inhibited (94%) by ET-1 (100 nM). The effects of ET-1 on resistin protein secretion were inhibited by co-incubation with the ET(A) receptor antagonist BQ-610. In conclusion, our studies demonstrate that basal and hormonal stimulation of resistin secretion by insulin are inhibited by ET-1. Such findings demonstrate that resistin secretion is regulated in a similar manner to other adipose tissue factors, including leptin, in 3T3-L1 adipocytes. In addition, our findings suggest that vascular factors such as ET-1 may regulate whole body energy metabolism through adipocyte-derived hormones, including leptin and resistin.  相似文献   

9.
10.
Adiponectin, an adipocyte-derived protein   总被引:6,自引:0,他引:6  
Adipose tissue is a hormonally active tissue, producing adipocytokines which may influence activity of other tissues. Adiponectin, abundantly present in the plasma increases insulin sensitivity by stimulating fatty acid oxidation, decreases plasma triglycerides and improves glucose metabolism. Adiponectin levels are inversely related to the degree of adiposity. Anorexia nervosa and type 1 diabetes are associated with increased plasma adiponectin levels and higher insulin sensitivity. Decreased plasma adiponectin levels were reported in insulin-resistant states, such as obesity and type 2 diabetes and in patients with coronary artery disease. Activity of adiponectin is associated with leptin, resistin and with steroid and thyroid hormones, glucocorticoids, NO and others. Adiponectin suppresses expression of extracellular matrix adhesive proteins in endothelial cells and atherosclerosis potentiating cytokines. Anti-atherogenic and anti-inflammatory properties of adiponectin and the ability to stimulate insulin sensitivity have made adiponectin an important object for physiological and pathophysiological studies with the aim of potential therapeutic applications.  相似文献   

11.
Adiponectin--its role in metabolism and beyond.   总被引:21,自引:0,他引:21  
Adiponectin is a recently identified adipose tissue-derived protein (adipocytokine) with important metabolic effects. It is exclusively expressed in adipose tissue and released into the circulation. Adiponectin expression and/or secretion is increased by insulin like growth factor-1 and ionomycin, and decreased by tumor necrosis factor-alpha, glucocorticoids, beta-adrenergic agonists and cAMP. Data for insulin are somewhat inconclusive. Moreover, adiponectin expression and secretion are increased by activators of peroxisome proliferator-activated receptor (PPAR)-gamma. Besides inhibiting inflammatory pathways, recombinant adiponectin increases insulin sensitivity and improves glucose tolerance in various animal models. This insulin-sensitizing effect appears to be mostly attributable to enhanced suppression of glucose production, but beneficial effects on muscle cannot be excluded. In humans, plasma adiponectin concentrations exceed those of any other hormone by a thousand times; they decrease with obesity and are positively associated with whole-body insulin sensitivity. Therefore, low adiponectin may contribute to the decrease in whole-body insulin sensitivity that accompanies obesity. Furthermore, there is increasing evidence that genetic variants in the adiponectin gene itself and/or in genes encoding adiponectin-regulatory proteins--such as PPAR-gamma--may be associated with hypoadiponectinemia, insulin resistance and type 2 diabetes. This suggests that adiponectin may reflect PPAR-gamma activity in vivo. Finally, reversal or alleviation of hypoadiponectinemia may represent a target for development of drugs improving insulin sensitivity and glucose tolerance.  相似文献   

12.
The aim of this review is to present the up-to-date data about adiponectin and it's role in pathogenesis of cardiovascular disease. Adiponectin is a hormone derived from adipose tissue which regulates energy metabolism, and plays an important role in the pathogenesis of insulin resistance. Serum levels of adiponectin are reduced in obesity, hypertension, metabolic syndrome and type 2 diabetes. Moreover, plasma adiponectin concentration is inversely associated with LDL-cholesterol, TG and is positively related to HDL-cholesterol. Recent studies have indicated that adiponectin has antiinflammatory and antiatherogenic properties. Review of the data confirmed the hypothesis that adiponectin plays an important role in pathogenesis of cardiovascular disease.  相似文献   

13.
Adiponectin, an adipocyte secretory hormone, has been causally linked to insulin resistance in the metabolic syndrome and diabetes. A recent paper (Mao et al., 2006) shows that the APPL1 adaptor protein binds to the intracellular domain of adiponectin receptors and mediates some of adiponectin's actions, identifying a novel mechanism linking adiponectin to insulin sensitization.  相似文献   

14.
Maternal pregestational obesity is a well-known risk factor for offspring obesity, metabolic syndrome, cardiovascular disease and type 2 diabetes. The mechanisms by which maternal obesity can induce alterations in fetal and later neonatal metabolism are not fully elucidated due to its complexity and multifactorial causes. Two adipokines, leptin and adiponectin, are involved in fetal and postnatal growth trajectories, and both are altered in women with pregestational obesity. The placenta synthesizes leptin, which goes mainly to the maternal circulation and in lesser amount to the developing fetus. Maternal pregestational obesity and hyperleptinemia are associated with placental dysfunction and changes in nutrient transporters which directly affect fetal growth and development. By the other side, the embryo can produce its own leptin from early in development, which is associated to fetal weight and adiposity. Adiponectin, an insulin-sensitizing adipokine, is downregulated in maternal obesity. High molecular weight (HMW) adiponectin is the most abundant form and with most biological actions. In maternal obesity lower total and HMW adiponectin levels have been described in the mother, paralleled with high levels in the umbilical cord. Several studies have found that cord blood adiponectin levels are related with postnatal growth trajectories, and it has been suggested that low adiponectin levels in women with pregestational obesity enhance placental insulin sensitivity and activation of placental amino acid transport systems, supporting fetal overgrowth. The possible mechanisms by which maternal pregestational obesity, focusing in the actions of leptin and adiponectin, affects the fetal development and postnatal growth trajectories in their offspring are discussed.  相似文献   

15.
Arima S 《Steroids》2006,71(4):281-285
Recent studies provide evidence that aldosterone (Aldo) accelerates hypertension, proteinuria and glomerulosclerosis in animal models of chronic renal failure. Although the underlying mechanisms are not well defined, Aldo may exert these deleterious renal effects by elevating renal vascular resistance (RVR) and glomerular capillary pressure (P(GC)). To test this possibility, we studied the action of Aldo on rabbit afferent (Af-) and efferent arterioles (Ef-Arts), crucial vascular segments to the control of glomerular hemodynamics. Aldo caused rapid (within 5 min) constriction in both arterioles. The constriction was not affected by spironolactone but was reproduced by membrane-impermeable albumin-conjugated Aldo, suggesting that vasoconstrictor actions are non-genomic. This notion was further supported by the finding that neither actinomycin D nor cycloheximide had effect. The vasoconstrictor action of Aldo on Af-Arts was inhibited by nifedipine (L-type calcium channel blocker), whereas that on Ef-Arts was inhibited by efonidipine (both L- and T-type calcium channel blocker) but not nifedipine. Disrupting the endothelium or nitric oxide (NO) synthesis inhibition augmented the vasoconstriction in Af-Arts, demonstrating that endothelium-derived NO modulates the vasoconstrictor actions of Aldo. Thus, Aldo causes non-genomic vasoconstriction via calcium mobilization thorough L- or T-type calcium channels in Af- or Ef-Arts, respectively. These vasoconstrictor actions on the glomerular microcirculation may play an important role in the pathophysiology and progression of renal diseases by elevating RVR and P(GC), especially when endothelium functions are impaired. In addition to our study, this review describes recent findings on the rapid cardiovascular actions of Aldo, with a particular attention to the renal hemodynamics.  相似文献   

16.
Most rodent models of insulin resistance are accompanied by decreased circulating adiponectin levels. Adiponectin treatment improves the metabolic phenotype by increasing fatty acid oxidation in skeletal muscle and suppressing hepatic glucose production. Muscle IGF-I receptor (IGF-IR)-lysine-arginine (MKR) mice expressing dominant-negative mutant IGF-IRs in skeletal muscle are diabetic with insulin resistance in muscle, liver, and adipose tissue. Adiponectin levels are elevated in MKR mice, suggesting an unusual discordance between insulin resistance and adiponectin responsiveness. Therefore, we investigated the metabolic actions of adiponectin in MKR mice. MKR and ob/ob mice were treated both acutely (28 microg/g) and chronically (for 2 wk) with full-length adiponectin. Acute hypoglycemic effects of adiponectin were evident only in ob/ob mice but not in MKR mice. Chronic adiponectin treatment significantly improved both insulin sensitivity and glucose tolerance in ob/ob but not in MKR mice. Adiponectin receptor mRNA levels and adiponectin-stimulated phosphorylation of AMPK in skeletal muscle and liver were similar among MKR, wild-type, and ob/ob mice. Thus MKR mice are adiponectin resistant despite normal expression of adiponectin receptors and normal AMPK phosphorylation in muscle and liver. MKR mice may be a useful model for dissecting relationships between insulin resistance and adiponectin action in regulation of glucose homeostasis.  相似文献   

17.
Adiponectin, obesity, and cardiovascular disease   总被引:18,自引:0,他引:18  
Fasshauer M  Paschke R  Stumvoll M 《Biochimie》2004,86(11):779-784
Several adipocyte-secreted factors have been demonstrated to potentially link obesity, insulin resistance, and cardiovascular disease. Among those, adiponectin is an insulin-sensitizing and anti-inflammatory adipokine, concentrations of which are decreased in obesity-associated metabolic and vascular disorders. Recently, two adiponectin receptors (AdipoR) have been isolated and adenosine monophosphate kinase (AMPK), as well as acetyl coenzyme A carboxylase (ACC), appear to be critical downstream mediators for various effects of this adipokine. In addition to beneficial metabolic effects, adiponectin seems to be vasoprotective by interfering with various atherogenic processes. Of clinical interest, thiazolidinediones (TZDs) which are used in the treatment of type 2 diabetes stimulate adiponectin expression and secretion whereas several hormones dysregulated in insulin resistance and obesity downregulate this adipokine. The current knowledge on regulation and function of adiponectin in obesity, insulin resistance, and cardiovascular disease is summarized in this review and its clinical implications are discussed.  相似文献   

18.
Adiponectin, an adipocyte-derived protein, has cardioprotective actions. We elucidated the role of the adiponectin receptors AdipoR1 and AdipoR2 in the effects of adiponectin on endothelin-1 (ET-1)-induced hypertrophy in cultured cardiomyocytes, and we examined the expression of adiponectin receptors in normal and infarcted mouse hearts. Recombinant full-length adiponectin suppressed the ET-1-induced increase in cell surface area and [(3)H]leucine incorporation into cultured cardiomyocytes compared with cells treated with ET-1 alone. Transfection of small interfering RNA (siRNA) specific for AdipoR1 or AdipoR2 reversed the suppressive effects of adiponectin on ET-1-induced cellular hypertrophy in cultured cardiomyocytes. Adiponectin induced phosphorylation of AMP-activated protein kinase (AMPK) and inhibited ET-1-induced ERK1/2 phosphorylation, which were also reversible by transfection of siRNA for AdipoR1 or AdipoR2 in cultured cardiomyocytes. Transfection of siRNA for alpha(2)-catalytic subunits of AMPK reduced the inhibitory effects of adiponectin on ET-1-induced cellular hypertrophy and ERK1/2 phosphorylation. Effects of globular adiponectin were similar to those of full-length adiponectin, and siRNA for AdipoR1 reversed the actions of globular adiponectin. Compared with normal left ventricle, expression levels of AdipoR1 mRNA and protein were decreased in the remote, as well as the infarcted, area after myocardial infarction in mouse hearts. In conclusion, AdipoR1 and AdipoR2 mediate the suppressive effects of full-length and globular adiponectin on ET-1-induced hypertrophy in cultured cardiomyocytes, and AMPK is involved in signal transduction through these receptors. AdipoR1 and AdipoR2 might play a role in the pathogenesis of ET-1-related cardiomyocyte hypertrophy after myocardial infarction.  相似文献   

19.
Adiponectin, a protein exclusively secreted by adipose tissue but present at low levels in obesity, is now widely recognised as a key determinant of insulin sensitivity and of protection against obesity-associated metabolic syndrome. In this review we explain how genetic findings have contributed to a better understanding of the physiological role of adiponectin in humans. The adiponectin-encoding gene, ADIPOQ (ACDC), is very polymorphic: many frequent exonic synonymous, intronic and promoter single-nucleotide polymorphisms (SNPs) have been identified, as well as a few rare exonic amino acid substitutions. Several of these variations additively contribute to the modulation of adiponectin level and function, and associate with insulin sensitivity, type 2 diabetes and vascular complications of obesity.  相似文献   

20.
Nitric oxide (NO) and endothelin-1 (ET-1) are natural counterparts in vascular function, and it is becoming increasingly clear that an imbalance between these two mediators is a characteristic of endothelial dysfunction and is important in the progression of vascular disease. Here, we review classical and more recent data that suggest that ET-1 should be regarded as an essential component of NO signaling. In particular, we review evidence of the role of ET-1 in models of acute and chronic NO synthase blockade. Furthermore, we discuss the possible mechanisms by which NO modulates ET-1 activity. On the basis of these studies, we suggest that NO tonically inhibits ET-1 function, and in conditions of diminished NO bioavailability, the deleterious effects of unmitigated ET-1 actions result in vasoconstriction and eventually lead to vascular remodeling and dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号