首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Insertions and deletions (indels) are the most abundant form of structural variation in all genomes. Indels have been increasingly recognized as an important source of molecular markers due to high-density occurrence, cost-effectiveness, and ease of genotyping. Coupled with developments in bioinformatics, next-generation sequencing (NGS) platforms enable the discovery of millions of indel polymorphisms by comparing the whole genome sequences of individuals within a species.

Results

A total of 1,973,746 unique indels were identified in 345 maize genomes, with an overall density of 958.79 indels/Mbp, and an average allele number of 2.76, ranging from 2 to 107. There were 264,214 indels with polymorphism information content (PIC) values greater than or equal to 0.5, accounting for 13.39 % of overall indels. Of these highly polymorphic indels, we designed primer pairs for 83,481 and 29,403 indels with major allele differences (i.e. the size difference between the most and second most frequent alleles) greater than or equal to 3 and 8 bp, respectively, based on the differing resolution capabilities of gel electrophoresis. The accuracy of our indel markers was experimentally validated, and among 100 indel markers, average accuracy was approximately 90 %. In addition, we also validated the polymorphism of the indel markers. Of 100 highly polymorphic indel markers, all had polymorphisms with average PIC values of 0.54.

Conclusions

The maize genome is rich in indel polymorphisms. Intriguingly, the level of polymorphism in genic regions of the maize genome was higher than that in intergenic regions. The polymorphic indel markers developed from this study may enhance the efficiency of genetic research and marker-assisted breeding in maize.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1797-5) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

With the advance of next generation sequencing (NGS) technologies, a large number of insertion and deletion (indel) variants have been identified in human populations. Despite much research into variant calling, it has been found that a non-negligible proportion of the identified indel variants might be false positives due to sequencing errors, artifacts caused by ambiguous alignments, and annotation errors.

Results

In this paper, we examine indel redundancy in dbSNP, one of the central databases for indel variants, and develop a standalone computational pipeline, dubbed Vindel, to detect redundant indels. The pipeline first applies indel position information to form candidate redundant groups, then performs indel mutations to the reference genome to generate corresponding indel variant substrings. Finally the indel variant substrings in the same candidate redundant groups are compared in a pairwise fashion to identify redundant indels. We applied our pipeline to check for redundancy in the human indels in dbSNP. Our pipeline identified approximately 8% redundancy in insertion type indels, 12% in deletion type indels, and overall 10% for insertions and deletions combined. These numbers are largely consistent across all human autosomes. We also investigated indel size distribution and adjacent indel distance distribution for a better understanding of the mechanisms generating indel variants.

Conclusions

Vindel, a simple yet effective computational pipeline, can be used to check whether a set of indels are redundant with respect to those already in the database of interest such as NCBI’s dbSNP. Of the approximately 5.9 million indels we examined, nearly 0.6 million are redundant, revealing a serious limitation in the current indel annotation. Statistics results prove the consistency of the pipeline on indel redundancy detection for all 22 chromosomes. Apart from the standalone Vindel pipeline, the indel redundancy check algorithm is also implemented in the web server http://bioinformatics.cs.vt.edu/zhanglab/indelRedundant.php.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0359-1) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

The Ion Torrent PGM is a popular benchtop sequencer that shows promise in replacing conventional Sanger sequencing as the gold standard for mutation detection. Despite the PGM’s reported high accuracy in calling single nucleotide variations, it tends to generate many false positive calls in detecting insertions and deletions (indels), which may hinder its utility for clinical genetic testing.

Results

Recently, the proprietary analytical workflow for the Ion Torrent sequencer, Torrent Suite (TS), underwent a series of upgrades. We evaluated three major upgrades of TS by calling indels in the BRCA1 and BRCA2 genes. Our analysis revealed that false negative indels could be generated by TS under both default calling parameters and parameters adjusted for maximum sensitivity. However, indel calling with the same data using the open source variant callers, GATK and SAMtools showed that false negatives could be minimised with the use of appropriate bioinformatics analysis. Furthermore, we identified two variant calling measures, Quality-by-Depth (QD) and VARiation of the Width of gaps and inserts (VARW), which substantially reduced false positive indels, including non-homopolymer associated errors without compromising sensitivity. In our best case scenario that involved the TMAP aligner and SAMtools, we achieved 100% sensitivity, 99.99% specificity and 29% False Discovery Rate (FDR) in indel calling from all 23 samples, which is a good performance for mutation screening using PGM.

Conclusions

New versions of TS, BWA and GATK have shown improvements in indel calling sensitivity and specificity over their older counterpart. However, the variant caller of TS exhibits a lower sensitivity than GATK and SAMtools. Our findings demonstrate that although indel calling from PGM sequences may appear to be noisy at first glance, proper computational indel calling analysis is able to maximize both the sensitivity and specificity at the single base level, paving the way for the usage of this technology for future clinical genetic testing.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-516) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Popular bioinformatics approaches for studying protein functional dynamics include comparisons of crystallographic structures, molecular dynamics simulations and normal mode analysis. However, determining how observed displacements and predicted motions from these traditionally separate analyses relate to each other, as well as to the evolution of sequence, structure and function within large protein families, remains a considerable challenge. This is in part due to the general lack of tools that integrate information of molecular structure, dynamics and evolution.

Results

Here, we describe the integration of new methodologies for evolutionary sequence, structure and simulation analysis into the Bio3D package. This major update includes unique high-throughput normal mode analysis for examining and contrasting the dynamics of related proteins with non-identical sequences and structures, as well as new methods for quantifying dynamical couplings and their residue-wise dissection from correlation network analysis. These new methodologies are integrated with major biomolecular databases as well as established methods for evolutionary sequence and comparative structural analysis. New functionality for directly comparing results derived from normal modes, molecular dynamics and principal component analysis of heterogeneous experimental structure distributions is also included. We demonstrate these integrated capabilities with example applications to dihydrofolate reductase and heterotrimeric G-protein families along with a discussion of the mechanistic insight provided in each case.

Conclusions

The integration of structural dynamics and evolutionary analysis in Bio3D enables researchers to go beyond a prediction of single protein dynamics to investigate dynamical features across large protein families. The Bio3D package is distributed with full source code and extensive documentation as a platform independent R package under a GPL2 license from http://thegrantlab.org/bio3d/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0399-6) contains supplementary material, which is available to authorized users.  相似文献   

5.
Q Xu  G Xiong  P Li  F He  Y Huang  K Wang  Z Li  J Hua 《PloS one》2012,7(8):e37128

Background

Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time.

Methodology/Principal Findings

The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43–0.68 million years ago (MYA).

Conclusion

Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1–3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in Gossypium is the maternal source of extant allotetraploid species and allotetraploids have a monophyletic origin. G. hirsutum AD1 lineages have experienced more sequence variations than other allotetraploids in intergenic regions. The available complete nucleotide sequences of 12 Gossypium chloroplast genomes should facilitate studies to uncover the molecular mechanisms of compartmental co-evolution and speciation of Gossypium allotetraploids.  相似文献   

6.

Background

Recent advances in deep digital sequencing have unveiled an unprecedented degree of clonal heterogeneity within a single tumor DNA sample. Resolving such heterogeneity depends on accurate estimation of fractions of alleles that harbor somatic mutations. Unlike substitutions or small indels, structural variants such as deletions, duplications, inversions and translocations involve segments of DNAs and are potentially more accurate for allele fraction estimations. However, no systematic method exists that can support such analysis.

Results

In this paper, we present a novel maximum-likelihood method that estimates allele fractions of structural variants integratively from various forms of alignment signals. We develop a tool, BreakDown, to estimate the allele fractions of most structural variants including medium size (from 1 kilobase to 1 megabase) deletions and duplications, and balanced inversions and translocations.

Conclusions

Evaluation based on both simulated and real data indicates that our method systematically enables structural variants for clonal heterogeneity analysis and can greatly enhance the characterization of genomically instable tumors.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-299) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background  

Distantly related proteins adopt and retain similar structural scaffolds despite length variations that could be as much as two-fold in some protein superfamilies. In this paper, we describe an analysis of indel regions that accommodate length variations amongst related proteins. We have developed an algorithm CUSP, to examine multi-membered PASS2 superfamily alignments to identify indel regions in an automated manner. Further, we have used the method to characterize the length, structural type and biochemical features of indels in related protein domains.  相似文献   

8.
Du QS  Meng JZ  Wang CH  Long SY  Huang RB 《PloS one》2011,6(12):e28206

Background

The proteins in a family, which perform the similar biological functions, may have very different amino acid composition, but they must share the similar 3D structures, and keep a stable central region. In the conservative structure region similar biological functions are performed by two or three catalytic residues with the collaboration of several functional residues at key positions. Communication signals are conducted in a position network, adjusting the biological functions in the protein family.

Methodology

A computational approach, namely structural position correlation analysis (SPCA), is developed to analyze the correlation relationship between structural segments (or positions). The basic hypothesis of SPCA is that in a protein family the structural conservation is more important than the sequence conservation, and the local structural changes may contain information of biology functional evolution. A standard protein P(0) is defined in a protein family, which consists of the most-frequent amino acids and takes the average structure of the protein family. The foundational variables of SPCA is the structural position displacements between the standard protein P(0) and individual proteins Pi of the family. The structural positions are organized as segments, which are the stable units in structural displacements of the protein family. The biological function differences of protein members are determined by the position structural displacements of individual protein Pi to the standard protein P(0). Correlation analysis is used to analyze the communication network among segments.

Conclusions

The structural position correlation analysis (SPCA) is able to find the correlation relationship among the structural segments (or positions) in a protein family, which cannot be detected by the amino acid sequence and frequency-based methods. The functional communication network among the structural segments (or positions) in protein family, revealed by SPCA approach, well illustrate the distantly allosteric interactions, and contains valuable information for protein engineering study.  相似文献   

9.

Background

The physical interactions between proteins constitute the basis of protein quaternary structures. They dominate many biological processes in living cells. Deciphering the structural features of interacting proteins is essential to understand their cellular functions. Similar to the space of protein tertiary structures in which discrete patterns are clearly observed on fold or sub-fold motif levels, it has been found that the space of protein quaternary structures is highly degenerate due to the packing of compact secondary structure elements at interfaces. Therefore, it is necessary to further decompose the protein quaternary structural space into a more local representation.

Results

Here we constructed an interface fragment pair library from the current structure database of protein complexes. After structural-based clustering, we found that more than 90% of these interface fragment pairs can be represented by a limited number of highly abundant motifs. These motifs were further used to guide complex assembly. A large-scale benchmark test shows that the native-like binding is highly likely in the structural ensemble of modeled protein complexes that were built through the library.

Conclusions

Our study therefore presents supportive evidences that the space of protein quaternary structures can be represented by the combination of a small set of secondary-structure-based packing at binding interfaces. Finally, after future improvements such as adding sequence profiles, we expect this new library will be useful to predict structures of unknown protein-protein interactions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0437-4) contains supplementary material, which is available to authorized users.  相似文献   

10.
Margus T  Remm M  Tenson T 《PloS one》2011,6(8):e22789

Background

Elongation factor G (EFG) is a core translational protein that catalyzes the elongation and recycling phases of translation. A more complex picture of EFG''s evolution and function than previously accepted is emerging from analyzes of heterogeneous EFG family members. Whereas the gene duplication is postulated to be a prominent factor creating functional novelty, the striking divergence between EFG paralogs can be interpreted in terms of innovation in gene function.

Methodology/Principal Findings

We present a computational study of the EFG protein family to cover the role of gene duplication in the evolution of protein function. Using phylogenetic methods, genome context conservation and insertion/deletion (indel) analysis we demonstrate that the EFG gene copies form four subfamilies: EFG I, spdEFG1, spdEFG2, and EFG II. These ancient gene families differ by their indispensability, degree of divergence and number of indels. We show the distribution of EFG subfamilies and describe evidences for lateral gene transfer and recent duplications. Extended studies of the EFG II subfamily concern its diverged nature. Remarkably, EFG II appears to be a widely distributed and a much-diversified subfamily whose subdivisions correlate with phylum or class borders. The EFG II subfamily specific characteristics are low conservation of the GTPase domain, domains II and III; absence of the trGTPase specific G2 consensus motif “RGITI”; and twelve conserved positions common to the whole subfamily. The EFG II specific functional changes could be related to changes in the properties of nucleotide binding and hydrolysis and strengthened ionic interactions between EFG II and the ribosome, particularly between parts of the decoding site and loop I of domain IV.

Conclusions/Significance

Our work, for the first time, comprehensively identifies and describes EFG subfamilies and improves our understanding of the function and evolution of EFG duplicated genes.  相似文献   

11.

Background

Candida albicans is a ubiquitous opportunistic fungal pathogen that afflicts immunocompromised human hosts. With rare and transient exceptions the yeast is diploid, yet despite its clinical relevance the respective sequences of its two homologous chromosomes have not been completely resolved.

Results

We construct a phased diploid genome assembly by deep sequencing a standard laboratory wild-type strain and a panel of strains homozygous for particular chromosomes. The assembly has 700-fold coverage on average, allowing extensive revision and expansion of the number of known SNPs and indels. This phased genome significantly enhances the sensitivity and specificity of allele-specific expression measurements by enabling pooling and cross-validation of signal across multiple polymorphic sites. Additionally, the diploid assembly reveals pervasive and unexpected patterns in allelic differences between homologous chromosomes. Firstly, we see striking clustering of indels, concentrated primarily in the repeat sequences in promoters. Secondly, both indels and their repeat-sequence substrate are enriched near replication origins. Finally, we reveal an intimate link between repeat sequences and indels, which argues that repeat length is under selective pressure for most eukaryotes. This connection is described by a concise one-parameter model that explains repeat-sequence abundance in C. albicans as a function of the indel rate, and provides a general framework to interpret repeat abundance in species ranging from bacteria to humans.

Conclusions

The phased genome assembly and insights into repeat plasticity will be valuable for better understanding allele-specific phenomena and genome evolution.  相似文献   

12.

Background

Several genomes have now been sequenced, with millions of genetic variants annotated. While significant progress has been made in mapping single nucleotide polymorphisms (SNPs) and small (<10 bp) insertion/deletions (indels), the annotation of larger structural variants has been less comprehensive. It is still unclear to what extent a typical genome differs from the reference assembly, and the analysis of the genomes sequenced to date have shown varying results for copy number variation (CNV) and inversions.

Results

We have combined computational re-analysis of existing whole genome sequence data with novel microarray-based analysis, and detect 12,178 structural variants covering 40.6 Mb that were not reported in the initial sequencing of the first published personal genome. We estimate a total non-SNP variation content of 48.8 Mb in a single genome. Our results indicate that this genome differs from the consensus reference sequence by approximately 1.2% when considering indels/CNVs, 0.1% by SNPs and approximately 0.3% by inversions. The structural variants impact 4,867 genes, and >24% of structural variants would not be imputed by SNP-association.

Conclusions

Our results indicate that a large number of structural variants have been unreported in the individual genomes published to date. This significant extent and complexity of structural variants, as well as the growing recognition of their medical relevance, necessitate they be actively studied in health-related analyses of personal genomes. The new catalogue of structural variants generated for this genome provides a crucial resource for future comparison studies.  相似文献   

13.

Background  

Protein sequence insertions/deletions (indels) can be introduced during evolution or through alternative splicing (AS). Alternative splicing is an important biological phenomenon and is considered as the major means of expanding structural and functional diversity in eukaryotes. Knowledge of the structural changes due to indels is critical to our understanding of the evolution of protein structure and function. In addition, it can help us probe the evolution of alternative splicing and the diversity of functional isoforms. However, little is known about the effects of indels, in particular the ones involving core secondary structures, on the folding of protein structures. The long term goal of our study is to accurately predict the protein AS isoform structures. As a first step towards this goal, we performed a systematic analysis on the structural changes caused by short internal indels through mining highly homologous proteins in Protein Data Bank (PDB).  相似文献   

14.

Background

The 1000 Genome project paved the way for sequencing diverse human populations. New genome projects are being established to sequence underrepresented populations helping in understanding human genetic diversity. The Kuwait Genome Project an initiative to sequence individual genomes from the three subgroups of Kuwaiti population namely, Saudi Arabian tribe; “tent-dwelling” Bedouin; and Persian, attributing their ancestry to different regions in Arabian Peninsula and to modern-day Iran (West Asia). These subgroups were in line with settlement history and are confirmed by genetic studies. In this work, we report whole genome sequence of a Kuwaiti native from Persian subgroup at >37X coverage.

Results

We document 3,573,824 SNPs, 404,090 insertions/deletions, and 11,138 structural variations. Out of the reported SNPs and indels, 85,939 are novel. We identify 295 ‘loss-of-function’ and 2,314 ’deleterious’ coding variants, some of which carry homozygous genotypes in the sequenced genome; the associated phenotypes include pharmacogenomic traits such as greater triglyceride lowering ability with fenofibrate treatment, and requirement of high warfarin dosage to elicit anticoagulation response. 6,328 non-coding SNPs associate with 811 phenotype traits: in congruence with medical history of the participant for Type 2 diabetes and β-Thalassemia, and of participant’s family for migraine, 72 (of 159 known) Type 2 diabetes, 3 (of 4) β-Thalassemia, and 76 (of 169) migraine variants are seen in the genome. Intergenome comparisons based on shared disease-causing variants, positions the sequenced genome between Asian and European genomes in congruence with geographical location of the region. On comparison, bead arrays perform better than sequencing platforms in correctly calling genotypes in low-coverage sequenced genome regions however in the event of novel SNP or indel near genotype calling position can lead to false calls using bead arrays.

Conclusions

We report, for the first time, reference genome resource for the population of Persian ancestry. The resource provides a starting point for designing large-scale genetic studies in Peninsula including Kuwait, and Persian population. Such efforts on populations under-represented in global genome variation surveys help augment current knowledge on human genome diversity.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1233-x) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Mutation(s) in proteins are a natural byproduct of evolution but can also cause serious diseases. Aminoacyl-tRNA synthetases (aaRSs) are indispensable components of all cellular protein translational machineries, and in humans they drive translation in both cytoplasm and mitochondria. Mutations in aaRSs have been implicated in a plethora of diseases including neurological conditions, metabolic disorders and cancer.

Results

We have developed an algorithmic approach for genome-wide analyses of sequence substitutions that combines evolutionary, structural and functional information. This pipeline enabled us to super-annotate human aaRS mutations and analyze their linkage to health disorders. Our data suggest that in some but not all cases, aaRS mutations occur in functional and structural sectors where they can manifest their pathological effects by altering enzyme activity or causing structural instability. Further, mutations appear in both solvent exposed and buried regions of aaRSs indicating that these alterations could lead to dysfunctional enzymes resulting in abnormal protein translation routines by affecting inter-molecular interactions or by disruption of non-bonded interactions. Overall, the prevalence of mutations is much higher in mitochondrial aaRSs, and the two most often mutated aaRSs are mitochondrial glutamyl-tRNA synthetase and dual localized glycyl-tRNA synthetase. Out of 63 mutations annotated in this work, only 12 (~20%) were observed in regions that could directly affect aminoacylation activity via either binding to ATP/amino-acid, tRNA or by involvement in dimerization. Mutations in structural cores or at potential biomolecular interfaces account for ~55% mutations while remaining mutations (~25%) remain structurally un-annotated.

Conclusion

This work provides a comprehensive structural framework within which most defective human aaRSs have been structurally analyzed. The methodology described here could be employed to annotate mutations in other protein families in a high-throughput manner.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1063) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST.

Methodology/Principal Findings

We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of ∼100% and Mathew’s correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families.

Conclusions/Significance

Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for covering the search space effectively in minimal computational time. This study also provides an understanding of the ‘bridging’ role of related families.  相似文献   

17.
18.

Background and Aims

It is known that the miniature inverted-repeat terminal element (MITE) preferentially inserts into low-copy-number sequences or genic regions. Characterization of the second largest subunit of low-copy nuclear RNA polymerase II (RPB2) has indicated that MITE and indels have shaped the homoeologous RPB2 loci in the St and H genome of Eymus species in Triticeae. The aims of this study was to determine if there is MITE in the RPB2 gene in Hordeum genomes, and to compare the gene evolution of RPB2 with other diploid Triticeae species. The sequences were used to reconstruct the phylogeny of the genus Hordeum.

Methods

RPB2 regions from all diploid species of Hordeum, one tetraploid species (H. brevisubulatum) and ten accessions of diploid Triticeae species were amplified and sequenced. Parsimony analysis of the DNA dataset was performed in order to reveal the phylogeny of Hordeum species.

Key Results

MITE was detected in the Xu genome. A 27–36 bp indel sequence was found in the I and Xu genome, but deleted in the Xa and some H genome species. Interestingly, the indel length in H genomes corresponds well to their geographical distribution. Phylogenetic analysis of the RPB2 sequences positioned the H and Xa genome in one monophyletic group. The I and Xu genomes are distinctly separated from the H and Xa ones. The RPB2 data also separated all New World H genome species except H. patagonicum ssp. patagonicum from the Old World H genome species.

Conclusions

MITE and large indels have shaped the RPB2 loci between the Xu and H, I and Xa genomes. The phylogenetic analysis of the RPB2 sequences confirmed the monophyly of Hordeum. The maximum-parsimony analysis demonstrated the four genomes to be subdivided into two groups.Key words: Molecular evolution, RPB2, Hordeum, transposable element, phylogeny  相似文献   

19.

Background

Partitioning the human immunoglobulin variable region into variable (V), diversity (D), and joining (J) segments is a common sequence analysis step. We introduce a novel approximate dynamic programming method that uses conserved immunoglobulin gene motifs to improve performance of aligning V-segments of rearranged immunoglobulin (Ig) genes. Our new algorithm enhances the former JOINSOLVER algorithm by processing sequences with insertions and/or deletions (indels) and improves the efficiency for large datasets provided by high throughput sequencing.

Results

In our simulations, which include rearrangements with indels, the V-matching success rate improved from 61% for partial alignments of sequences with indels in the original algorithm to over 99% in the approximate algorithm. An improvement in the alignment of human VDJ rearrangements over the initial JOINSOLVER algorithm was also seen when compared to the Stanford.S22 human Ig dataset with an online VDJ partitioning software evaluation tool.

Conclusions

HTJoinSolver can rapidly identify V- and J-segments with indels to high accuracy for mutated sequences when the mutation probability is around 30% and 20% respectively. The D-segment is much harder to fit even at 20% mutation probability. For all segments, the probability of correctly matching V, D, and J increases with our alignment score.  相似文献   

20.
Won HH  Kim HJ  Lee KA  Kim JW 《PloS one》2008,3(10):e3575

Background

With the recent growth of information on sequence variations in the human genome, predictions regarding the functional effects and relevance to disease phenotypes of coding sequence variations are becoming increasingly important. The aims of this study were to catalog protein-coding sequence variations (CVs) occurring in genetic variation databases and to use bioinformatic programs to analyze CVs. In addition, we aim to provide insight into the functionality of the reference databases.

Methodology and Findings

To catalog CVs on a genome-wide scale with regard to protein function and disease, we investigated three representative databases; the Human Gene Mutation Database (HGMD), the Single Nucleotide Polymorphisms database (dbSNP), and the Haplotype Map (HapMap). Using these three databases, we analyzed CVs at the protein function level with bioinformatic programs. We proposed a combinatorial approach using the Support Vector Machine (SVM) to increase the performance of the prediction programs. By cataloging the coding sequence variations using these databases, we found that 4.36% of CVs from HGMD are concurrently registered in dbSNP (8.11% of CVs from dbSNP are concurrent in HGMD). The pattern of substitutions and functional consequences predicted by three bioinformatic programs was significantly different among concurrent CVs, and CVs occurring solely in HGMD or in dbSNP. The experimental results showed that the proposed SVM combination noticeably outperformed the individual prediction programs.

Conclusions

This is the first study to compare human sequence variations in HGMD, dbSNP and HapMap at the genome-wide level. We found that a significant proportion of CVs in HGMD and dbSNP overlap, and we emphasize the need to use caution when interpreting the phenotypic relevance of these concurrent CVs. Combining bioinformatic programs can be helpful in predicting the functional consequences of CVs because it improved the performance of functional predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号