首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: Quantifying the ex vivo growth of complex multispecies dental biofilms using cross‐polarization 1310‐nm optical coherence tomography (CP‐OCT) system was investigated. Methods and Results: Bacterial microcosms, which were derived from plaque samples of paediatric subjects, were incubated in a biofilm reactor system containing discs of different dental materials for 72 h with daily sucrose pulsing (5×). CP‐OCT analysis of biofilm mass was validated with crystal violet (CV) assays at various growth stages of these complex biofilms. CP‐OCT was able to filter out the back‐reflected signals of water layers in the hydrated biofilm and allowed for direct biofilm quantification. The overall depth‐resolved scattering intensity of the biofilm showed very strong positive correlation with CV assay quantification (Spearman’s ρ = 0·92) during the growth phase of the biofilm. Conclusion: CP‐OCT was able to quantify the mass of the biofilm by measuring the overall depth‐resolved scattering of the biofilm. Significance and Impact of the Study: CP‐OCT has the ability to nondestructively monitor biofilm growth and elucidate the growth characteristics of these microcosms on different dental material compositions.  相似文献   

2.
A forward imaging endoscope for optical coherence tomography angiography (OCTA) featuring a piezoelectric fiber scanner is presented. Imaging is performed with an optical coherence tomography (OCT) system incorporating an akinetic light source with a center wavelength of 1300 nm, bandwidth of 90 nm and A‐line rate of 173 kHz. The endoscope operates in contact mode to avoid motion artifacts, in particular, beneficial for OCTA measurements, and achieves a transversal resolution of 12 μm in air at a rigid probe size of 4 mm in diameter and 11.3 mm in length. A spiral scan pattern is generated at a scanning frequency of 360 Hz to sample a maximum field of view of 1.3 mm. OCT images of a human finger as well as visualization of microvasculature of the human palm are presented both in two and three dimensions. The combination of morphological tissue contrast with qualitative dynamic blood flow information within this endoscopic imaging approach potentially enables improved early diagnostic capabilities of internal organs for diseases such as bladder cancer.   相似文献   

3.
We tried to explore the intrinsic differences in the optical properties of the four representative NPC cell lines on the models of radiobiology and metastasis by OCT. The scattering coefficients and anisotropies were extracted by fitting the average a‐scan attenuation curves based on the multiple scatter effect. The values of scattering coefficients and anisotropy factors were 5.21 ± 0.11, 5.30 ± 0.09, 5.92 ± 0.21, 6.97 ± 0.22, and 0.892 ± 0.009, 0.886 ± 0.006, 0.884 ± 0.009, 0.86 ± 0.01 for CNE1, CNE2, 5‐8F and 6‐10B pellets (p < 0.05, P = 0.07 for CNE1 and CNE2), respectively. The results showed that the radiobiology and metastasis cell's model could be distinguished obviously; which implied that the corresponding types of NPC tissue might be potentially differentiated by OCT. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Optical coherence tomography (OCT) was used to monitor the dynamics of tumour spheroid formation by the hanging drop method. In contrast to microscopy, the estimates obtained using OCT for the volume of the spheroid, were consistent with the measured changes in cell number as a function of time. The OCT images also revealed heterogeneous structures in the spheroids of ∼200 μm diameter. These corresponded to the necrotic regions identified by fluorescence of propidium iodide stained cells.  相似文献   

5.
We applied three‐dimensional (3D) analysis to optical coherence tomography angiography (OCTA) to measure macular ischemia in eyes affected by non‐proliferative diabetic retinopathy (DR). A previously validated algorithm was applied to OCTA data in order to obtain 3D visualization of the retinal vasculature. Successively, a global thresholding algorithm was applied and two novel quantitative metrics were introduced: 3D vascular volume and 3D perfusion density. Two‐dimensional (2D) OCTA metrics were also obtained with different binarization thresholds for comparison. Of the 30 patients included, 15 were diagnosed with DR and 15 were controls. The 3D vascular volume and 3D perfusion density were reduced in DR eyes (P < .0001). The 2D variables also significantly differ between groups. The 3D perfusion density had the highest area under the receiver operating characteristic curve (0.964) among tested variables. Assessing quantitative perfusion using 3D analysis is reliable and promising, and with an elevated diagnostic efficacy in identifying DR eyes.  相似文献   

6.
The Guadalupe fur seal (Arctocephalus townsendi) is a specialist predator feeding on prey present in one trophic level. Data related to the diet of the Guadalupe fur seal are few. It is still unknown where most of the individuals forage or the composition of their diet. On Isla Guadalupe, the San Benito Archipelago and the Farallon Islands, fur seals primarily feed on pelagic and coastal squids. However, differences between colonies were found probably caused by differences in diversity and abundance of prey species over the continental shelf and the pelagic environment, and maybe due to the plasticity of the species in their foraging behavior. Diet composition of the Guadalupe fur seal might reflect adaptations to local and temporal environmental conditions. The aim of this work was to consider historical information, add new information, identify main prey species, and determine where in the marine regions the Guadalupe fur seals feed.  相似文献   

7.
Imaging of cardiac tissue structure plays a critical role in the treatment and understanding of cardiovascular disease. Optical coherence tomography (OCT) offers the potential to provide valuable, high‐resolution imaging of cardiac tissue. However, there is a lack of comprehensive OCT imaging data of the human heart, which could improve identification of structural substrates underlying cardiac abnormalities. The objective of this study was to provide qualitative and quantitative analysis of OCT image features throughout the human heart. Fifty human hearts were acquired, and tissues from all chambers were imaged with OCT. Histology was obtained to verify tissue composition. Statistical differences between OCT image features corresponding to different tissue types and chambers were estimated using analysis of variance. OCT imaging provided features that were able to distinguish structures such as thickened collagen, as well as adipose tissue and fibrotic myocardium. Statistically significant differences were found between atria and ventricles in attenuation coefficient, and between adipose and all other tissue types. This study provides an overview of OCT image features throughout the human heart, which can be used for guiding future applications such as OCT‐integrated catheter‐based treatments or ex vivo investigation of structural substrates.  相似文献   

8.
Deep learning based retinopathy classification with optical coherence tomography (OCT) images has recently attracted great attention. However, existing deep learning methods fail to work well when training and testing datasets are different due to the general issue of domain shift between datasets caused by different collection devices, subjects, imaging parameters, etc. To address this practical and challenging issue, we propose a novel deep domain adaptation (DDA) method to train a model on a labeled dataset and adapt it to an unlabelled dataset (collected under different conditions). It consists of two modules for domain alignment, that is, adversarial learning and entropy minimization. We conduct extensive experiments on three public datasets to evaluate the performance of the proposed method. The results indicate that there are large domain shifts between datasets, resulting a poor performance for conventional deep learning methods. The proposed DDA method can significantly outperform existing methods for retinopathy classification with OCT images. It achieves retinopathy classification accuracies of 0.915, 0.959 and 0.990 under three cross-domain (cross-dataset) scenarios. Moreover, it obtains a comparable performance with human experts on a dataset where no labeled data in this dataset have been used to train the proposed DDA method. We have also visualized the learnt features by using the t-distributed stochastic neighbor embedding (t-SNE) technique. The results demonstrate that the proposed method can learn discriminative features for retinopathy classification.  相似文献   

9.
Drip irrigation is a water-saving technology. To date, little is known about how biofilm forms in drippers of irrigation systems. In this study, the internal dripper geometry was recreated in 3-D printed microfluidic devices (MFDs). To mimic the temperature conditions in (semi-) arid areas, experiments were conducted in a temperature controlled box between 20 and 50°C. MFDs were either fed with two different treated wastewater (TWW) or synthetic wastewater. Biofilm formation was monitored non-invasively and in situ by optical coherence tomography (OCT). 3-D OCT datasets reveal the major fouling position and illustrate that biofilm development was influenced by fluid dynamics. Biofilm volumetric coverage of the labyrinth up to 60% did not reduce the discharge rate, whereas a further increase to 80% reduced the discharge rate by 50%. Moreover, the biofilm formation rate was significantly inhibited in daily temperature cycle independent of the cultivation medium used.  相似文献   

10.

Background

Recently, a transgenic rabbit with rhodopsin Pro 347 Leu mutation was generated as a model of retinitis pigmentosa (RP), which is characterized by a gradual loss of vision due to photoreceptor degeneration. The purpose of the current study is to noninvasively visualize and assess time-dependent changes in the retinal structures of a rabbit model of retinal degeneration by using speckle noise-reduced spectral-domain optical coherence tomography (SD-OCT).

Methodology/Principal Findings

Wild type (WT) and RP rabbits (aged 4–20 weeks) were investigated using SD-OCT. The total retinal thickness in RP rabbits decreased with age. The thickness of the outer nuclear layer (ONL) and between the external limiting membrane and Bruch''s membrane (ELM–BM) were reduced in RP rabbits around the visual streak, compared to WT rabbits even at 4 weeks of age, and the differences increased with age. However, inner nuclear layer (INL) thickness in RP rabbits did not differ from that of WT during the observation period. The ganglion cell complex (GCC) thickness in RP rabbits increased near the optic nerve head but not around the visual streak in the later stages of the observation period. Hyper-reflective change was widely observed in the inner segments (IS) and outer segments (OS) of the photoreceptors in the OCT images of RP rabbits. Ultrastructural findings in RP retinas included the appearance of small rhodopsin-containing vesicles scattered in the extracellular space around the photoreceptors.

Conclusions/Significance

In the current study, SD-OCT provided the pattern of photoreceptor degeneration in RP rabbits and the longitudinal changes in each retinal layer through the evaluation of identical areas over time. The time-dependent changes in the retinal structure of RP rabbits showed regional and time-stage variations. In vivo imaging of RP rabbit retinas by using SD-OCT is a powerful method for characterizing disease dynamics and for assessing the therapeutic effects of experimental interventions.  相似文献   

11.
12.
Steoporosis is a skeletal disorder that compromises bone resistance and its diagnosis is usually performed using dual energy X‐ray absorptiometry. Thus, the search for efficient diagnostic methods that do not involve the emission of ionizing radiation is necessary. This study proposed to use the Optical Coherence Tomography (OCT) to evaluate osteoporosis in alveolar bone. Osteoporosis lesions is simulated in vitro in porcine bones, and imaging is performed by OCT and micro‐computed tomography (micro‐CT). A developed algorithm is proposed to calculate the optical attenuation coefficient ( μ t), mean optical attenuation coefficient (), integrated reflectivity (ΔR) and bone density ( BD). The , ΔR and BD parameters shows a good correlation to micro‐CT parameters (bone volume/tissue volume and total porosity). The μ t and methods are negatively impacted by non‐uniform intensities distribution in osteoporosis images. In conclusion, BD and ΔR analysis demonstrates to be potential techniques for diagnosis and monitoring of osteoporosis using OCT.   相似文献   

13.
The aim of this study is to identify changes in scattering with optical coherence tomography (OCT) and relate these measurements with mitochondrial changes during the initiation of apoptosis. Human retinal pigment epithelial cells were cultured and apoptosis was induced using 10% alcohol. Using the attenuation coefficient and backscattering, changes were measured during cell death in a cell‐pellet and monolayer respectively. To confirm apoptosis, fluorescent activated cell sorting was used. Mitochondrial activity during apoptosis was assessed using an oxidative stress assay and fluorescent confocal microscopy. Pelleted apoptotic cells measured with OCT showed a clear rise while untreated cells showed a very small increase in attenuation coefficient. Monolayered apoptotic cells displayed a distinct increase, while untreated cells showed a small increase in the backscattering. Apoptosis was confirmed by FACS experiments. Mitochondrial changes during the onset of apoptosis were also measured. The results demonstrate that apoptotic cell death could be monitored in real‐time by OCT. Changes in the scattering after induction of apoptosis are likely to be related to changes in the intracellular morphology. Oxidative stress‐induced mitochondrial swelling could be responsible for the initial increase, while cell blebbing and secondary necrosis subsequently for the observed decrease in scattering.

  相似文献   


14.
Optical coherence tomography has become an indispensable diagnostic tool in ophthalmology for imaging the retina and the anterior segment of the eye. However, the imaging depth of optical coherence tomography is limited by light attenuation in tissues due to optical scattering and absorption. In this study of rabbit eye both ex vivo and in vivo, optical coherence tomography imaging depth of the anterior and posterior segments of the eye was extended by using optical clearing agents to reduce multiple scattering. The sclera, the iris, and the ciliary body were clearly visualized by direct application of glycerol at an incision on the conjunctiva, and the posterior boundary of sclera and even the deeper tissues were detected by submerging the posterior segment of eye in glycerol solution ex vivo or by retro-bulbar injection of glycerol in vivo. The ex vivo rabbit eyes recovered to their original state in 60 s after saline-wash treatment, and normal optical coherence tomography images of the posterior segment of the sample eyes proved the self-recovery of in vivo performance. Signal intensities of optical coherence tomography images obtained before and after glycerol treatment were compared to analysis of the effect of optical clearing. To the best of our knowledge, this is the first study for imaging depth extension of optical coherence tomography in both the anterior and posterior segments of eye by using optical clearing agents.  相似文献   

15.
R Levis  G M Rubin 《Cell》1982,30(2):543-550
We have analyzed the lesion in wDZL, a genetically unstable mutant allele of the eye color locus, white, of Drosophila melanogaster. We have cloned the DNA of the white locus region of flies carrying the wDZL allele and find a 13 kilobase insertion not present in the wild-type at the corresponding location. In 12 independent cases examined, reversion to a wild-type eye color phenotype correlates with the excision of a portion of this 13 kilobase insertion, indicating that the insertion is the cause of the mutation. The portion of the insertion that is excised in these eye color revertants is heterogeneous in size but appears to include the central 6 kilobases of the insertion in all cases. Many of these eye color revertants continue to undergo mutation at the white locus, indicating that the residual portion of the insertion in these revertants is sufficient to promote mutations.  相似文献   

16.
This paper presents a novel instrument for biosciences, useful for studies of moving embryos. A dual sequential imaging/measurement channel is assembled via a closed‐loop tracking architecture. The dual channel system can operate in two regimes: (i) single‐point Doppler signal monitoring or (ii) fast 3‐D swept source OCT imaging. The system is demonstrated for characterizing cardiac dynamics in Drosophila melanogaster larva. Closed loop tracking enables long term in vivo monitoring of the larvae heart without anesthetic or physical restraint. Such an instrument can be used to measure subtle variations in the cardiac behavior otherwise obscured by the larvae movements.

A fruit fly larva (top) was continuously tracked for continuous remote monitoring. A heartbeat trace of freely moving larva (bottom) was obtained by a low coherence interferometry based doppler sensing technique.  相似文献   


17.
Polarization sensitive optical coherence tomography (PSOCT) is an interferometric technique sensitive to birefringence. Since mechanical loading alters the orientation of birefringent collagen fibrils, we asked if PSOCT can be used to measure local mechanical properties of sclera.Infrared (1300 nm) PSOCT was performed during uniaxial tensile loading of fresh scleral specimens of rabbits, cows, and humans from limbal, equatorial, and peripapillary regions. Specimens from 8 human eyes were obtained. Specimens were stretched to failure at 0.01 mm/s constant rate under physiological conditions of temperature and humidity while birefringence was computed every 117 ms from cross-sectional PSOCT. Birefringence modulus (BM) was defined as the rate of birefringence change with strain, and tensile modulus (TM) as the rate of stress change between 0 and 9% strain.In cow and rabbit, BM and TM were positively correlated with slopes of 0.17 and 0.10 GPa, and with correlation coefficients 0.63 and 0.64 (P < 0.05), respectively, following stress-optic coefficients 4.69, and 4.20 GPa−1. In human sclera, BM and TM were also positively correlated with slopes of 0.24 GPa for the limbal, 0.26 GPa for the equatorial, and 0.31 GPa for the peripapillary regions. Pearson correlation coefficients were significant at 0.51, 0.58, and 0.69 for each region, respectively (<0.001). Mean BM decreased proportionately to TM from the limbal to equatorial to peripapillary regions, as stress-optic coefficients were estimated as 2.19, 2.42, and 4.59 GPa−1, respectively.Since birefringence and tensile elastic moduli correlate differently in cow, rabbit, and various regions of human sclera, it might be possible to mechanically characterize the sclera in vivo using PSOCT.  相似文献   

18.
Local laser hyperthermia of grafted RShM-5 tumors in mice with the use of plasmon resonant gold nanoparticles has been carried out. Accumulation of particles in the tumor was monitored in vivo noninvasively by optical coherence tomography. Thereby it was determined that the maximal content of nanoparticles in the tumor was reached within 5 h after intravenous administration, and laser hyperthermia was performed at this time. Monitoring the tumor temperature during the treatment by IR thermography and acoustic thermometry showed that the nanoparticles provided efficient temperature elevation inside the tumor as well as more selective heating. Local laser hyperthermia with gold nanoparticles, but not the laser exposure alone, substantially inhibited tumor growth in several days after a single session.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号