首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of Piwi proteins and Piwi-interacting RNAs (piRNAs) carry out the repression of transposable elements in animal gonads. The Piwi protein clade is represented in D. melanogaster by three members: Piwi, Aub and Ago3. Piwi protein functions in the nuclei of somatic and germinal ovarian cells, whereas Aub and Ago3 are cytoplasmic proteins of germinal cells. Aub and Ago3 interact with each other in the perinuclear nuage organelle to perform piRNA amplification via the ping-pong mechanism. Previously, derepression of several transposable elements as a result of mutations in the piRNA silencing system was shown. Here we quantify the increase in expression level of an enlarged number of retrotransposons due to the mutations in the piwi gene, nuage components coding aub, mael and spn-E genes and the RNA helicase armi gene mutation that impairs Piwi nuclear localization, but not the ping-pong cycle. We reveal that piwi, armi, aub, spn-E and mael genes participate together in the repression of several transposons (HMS-Beagle, Gate and HeT-A), whereas silencing of land G elements requires the same genes except piwi. We suggest that Armi has other functions besides the localizing of Piwi protein in the nuclei. Our data suggest also a role of cytoplasmic Aub, Spn-E and Mael nuage proteins in Piwi-mediated repression of Gate and HMS-Beagle transposons in the germline nuclei. As a whole, our results corroborate the idea that genome stabilization in the germline is realized by different silencing strategies specific for different transposable elements. At the same time, our data suggest the existence of yet unknown mechanisms of interplay between nuclear and cytoplasmic components of the piRNA machinery in the germline.  相似文献   

2.
3.
4.
Transposons evolve rapidly and can mobilize and trigger genetic instability. Piwi-interacting RNAs (piRNAs) silence these genome pathogens, but it is unclear how the piRNA pathway adapts to invasion of new transposons. In Drosophila, piRNAs are encoded by heterochromatic clusters and maternally deposited in the embryo. Paternally inherited P element transposons thus escape silencing and trigger a hybrid sterility syndrome termed P-M hybrid dysgenesis. We show that P-M hybrid dysgenesis activates both P elements and resident transposons and disrupts the piRNA biogenesis machinery. As dysgenic hybrids age, however, fertility is restored, P elements are silenced, and P element piRNAs are produced de novo. In addition, the piRNA biogenesis machinery assembles, and resident elements are silenced. Significantly, resident transposons insert into piRNA clusters, and these new insertions are transmitted to progeny, produce novel piRNAs, and are associated with reduced transposition. P element invasion thus triggers heritable changes in genome structure that appear to enhance transposon silencing.  相似文献   

5.
piRNAs and Piwi proteins have been implicated in transposon control and are linked to transposon methylation in mammals. Here we examined the construction of the piRNA system in the restricted developmental window in which methylation patterns are set during mammalian embryogenesis. We find robust expression of two Piwi family proteins, MIWI2 and MILI. Their associated piRNA profiles reveal differences from Drosophila wherein large piRNA clusters act as master regulators of silencing. Instead, in mammals, dispersed transposon copies initiate the pathway, producing primary piRNAs, which predominantly join MILI in the cytoplasm. MIWI2, whose nuclear localization and association with piRNAs depend upon MILI, is enriched for secondary piRNAs antisense to the elements that it controls. The Piwi pathway lies upstream of known mediators of DNA methylation, since piRNAs are still produced in dnmt3L mutants, which fail to methylate transposons. This implicates piRNAs as specificity determinants of DNA methylation in germ cells.  相似文献   

6.
7.
Complexes of Piwi family proteins with short piRNAs (Piwi-interacting RNAs) are responsible for silencing transposable elements in animal reproductive organs. In Drosophila melanogaster, three proteins (Piwi, Aub, and Ago3) are members of the Piwi family. Piwi is the nuclear protein of somatic and germinal ovarian cells, whereas Aub and Ago3 are cytoplasmic proteins involved in piRNA amplification in perinuclear granules that constitute special organelles of germinal cells called nuage. Mutations in genes of the piRNA system are known to cause derepression of several transposable elements. In this study, we compared quantitatively changes in expression of a larger number of elements in the case of mutations in the piwi gene, genes aub, mael, and spn-E, which encode proteins of nuage granules, and armi gene coding an RNA helicase, the lack of which does not interfere with cytoplasmic piRNA amplification but disturbs nuclear localization of Piwi protein. We found that the genes piwi, armi, aub, spn-E, and mael interact to induce silencing of some retrotransposons (HMS-Beagle, Gate and HeT-A); the same genes, except piwi, are involved in repression of I and G elements. We propose that Armi is involved in control of not only nuclear Piwi localization. Our data suggest the relation of nuage proteins Aub, Spn-E, and Mael to Piwi-mediated silencing of retrotransposons Gate and HMS-Beagle in the nucleus. In general, our results corroborate the idea of genome stabilization by means of various silencing strategies specific to different transposable elements. At the same time, our data suggest the existence of yet unknown mechanisms of interplay between nuclear and cytoplasmic components of the piRNA machinery in germinal cells.  相似文献   

8.
Throughout the eukaryotic lineage, small RNA silencing pathways protect the genome against the deleterious influence of selfish genetic elements such as transposons. In animals an elaborate small RNA pathway centered on PIWI proteins and their interacting piRNAs silences transposons within the germline. In contrast to other small RNA silencing pathways, we lack a mechanistic understanding of this genome defense system. However, genetic and molecular studies have uncovered a fascinating conceptual framework for this pathway that is conserved from sponges to mammals. We discuss our current understanding of the piRNA pathway in Drosophila with an emphasis on origin and biogenesis of piRNAs.  相似文献   

9.
10.
11.
In animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors, which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown (shu), a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown.  相似文献   

12.
Aubergine is an RNA-binding protein of the Piwi clade, functioning in germline in the piRNA pathway that silences transposons and repetitive sequences. Several mutations of this gene exist, but they mostly result in truncated proteins or correspond to mutations that also affect neighboring genes. We have generated complete aubergine knock-out mutants that do not disrupt the neighboring genes. These novel mutants are characterized by PCR and sequencing. Their nature is confirmed by female sterility and by the presence of crystals in testes, common to the aubergine loss of function mutations. These mutants provide novel and more appropriate tools for the study of the piRNA pathway that controls genome stability.  相似文献   

13.
14.
RISC assembly defects in the Drosophila RNAi mutant armitage   总被引:14,自引:0,他引:14  
The putative RNA helicase, Armitage (Armi), is required to repress oskar translation in Drosophila oocytes; armi mutant females are sterile and armi mutations disrupt anteroposterior and dorsoventral patterning. Here, we show that armi is required for RNAi. armi mutant male germ cells fail to silence Stellate, a gene regulated endogenously by RNAi, and lysates from armi mutant ovaries are defective for RNAi in vitro. Native gel analysis of protein-siRNA complexes in wild-type and armi mutant ovary lysates suggests that armi mutants support early steps in the RNAi pathway but are defective in the production of active RNA-induced silencing complex (RISC), which mediates target RNA destruction in RNAi. Our results suggest that armi is required for RISC maturation.  相似文献   

15.
16.
The Piwi proteins of the Argonaute superfamily are required for normal germline development in Drosophila, zebrafish, and mice and associate with 24-30 nucleotide RNAs termed piRNAs. We identify a class of 21 nucleotide RNAs, previously named 21U-RNAs, as the piRNAs of C. elegans. Piwi and piRNA expression is restricted to the male and female germline and independent of many proteins in other small-RNA pathways, including DCR-1. We show that Piwi is specifically required to silence Tc3, but not other Tc/mariner DNA transposons. Tc3 excision rates in the germline are increased at least 100-fold in piwi mutants as compared to wild-type. We find no evidence for a Ping-Pong model for piRNA amplification in C. elegans. Instead, we demonstrate that Piwi acts upstream of an endogenous siRNA pathway in Tc3 silencing. These data might suggest a link between piRNA and siRNA function.  相似文献   

17.
piRNAs guide PIWI proteins to silence transposons in animal germ cells. Reciprocal cycles of piRNA-directed RNA cleavage--catalyzed by the PIWI proteins Aubergine (Aub) and Argonaute3 (Ago3) in Drosophila melanogaster--expand the population of antisense piRNAs in response to transposon expression, a process called the Ping-Pong cycle. Heterotypic Ping-Pong between Aub and Ago3 ensures that antisense piRNAs predominate. We show that qin, a piRNA pathway gene whose protein product contains both E3 ligase and Tudor domains, colocalizes with Aub and Ago3 in nuage, a perinuclear structure implicated in transposon silencing. In qin mutants, less Ago3 binds Aub, futile Aub:Aub homotypic Ping-Pong prevails, antisense piRNAs decrease, many families of mobile genetic elements are reactivated, and DNA damage accumulates in nurse cells and oocytes. We propose that Qin enforces heterotypic Ping-Pong between Aub and Ago3, ensuring that transposons are silenced and maintaining the integrity of the germline genome.  相似文献   

18.
PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations.  相似文献   

19.
20.
Drosophila melanogaster has a robust and efficient innate immune system, which reacts to infections ranging from bacteria to fungi and, as discovered recently, viruses as well. The known Drosophila immune responses rely on humoral and cellular activities, similar to those found in the innate immune system of other animals. Recently, RNAi or 'RNA silencing' has arisen as a possible means by which Drosophila can react to a specific pathogens, transposons and retroviral elements, in a fashion similar to that of a traditional mammalian adaptive immune system instead of in a more generalized and genome encoded innate immune-based response. RNAi is a highly conserved regulation and defence mechanism, which suppresses gene expression via targeted RNA degradation directed by either exogenous dsRNA (cleaved into siRNAs) or endogenous miRNAs. In plants, RNAi has been found to act as an antiviral immune response system. Here we show that RNAi is an antiviral response used by Drosophila to combat infection by Drosophila X Virus, a birnavirus, as well. Additionally, we identify multiple core RNAi pathway genes, including piwi, vasa intronic gene (vig), aubergine (aub), armitage (armi), Rm62, r2d2 and Argonaute2 (AGO2) as having vital roles in this response in whole organisms. Our findings establish Drosophila as an ideal model for the study of antiviral RNAi responses in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号