首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that Ir-induced G2/M arrest contributed to the increase in the mitochondrial ROS level by accumulating cells in the G2/M phase.  相似文献   

6.
7.
Much of our current knowledge of biology has been constructed based on population-average measurements. However, advances in single-cell analysis have demonstrated the omnipresent nature of cell-to-cell variability in any population. On one hand, tremendous efforts have been made to examine how such variability arises, how it is regulated by cellular networks, and how it can affect cell-fate decisions by single cells. On the other hand, recent studies suggest that the variability may carry valuable information that can facilitate the elucidation of underlying regulatory networks or the classification of cell states. To this end, a major challenge is determining what aspects of variability bear significant biological meaning. Addressing this challenge requires the development of new computational tools, in conjunction with appropriately chosen experimental platforms, to more effectively describe and interpret data on cell-cell variability. Here, we discuss examples of when population heterogeneity plays critical roles in determining biologically and clinically significant phenotypes, how it serves as a rich information source of regulatory mechanisms, and how we can extract such information to gain a deeper understanding of biological systems.  相似文献   

8.
9.
10.
Previous studies in MA-10 tumor Leydig cells demonstrated that disruption of the mitochondrial electron-transport chain (ETC), membrane potential (ΔΨ(m)), or ATP synthesis independently inhibited steroidogenesis. In contrast, studies of primary Leydig cells indicated that the ETC, ΔΨ(m), and ATP synthesis cooperatively affected steroidogenesis. These results suggest significant differences between the two systems and call into question the extent to which results from tumor Leydig cells relate to primary cells. Thus, to further understand the similarities and differences between the two systems as well as the impact of ATP disruption on steroidogenesis, we performed comparative studies of MA-10 and primary Leydig cells under similar conditions of mitochondrial disruption. We show that mitochondrial ATP synthesis is critical for steroidogenesis in both primary and tumor Leydig cells. However, in striking contrast to primary cells, perturbation of ΔΨ(m) in MA-10 cells did not substantially decrease cellular ATP content, a perplexing finding because ΔΨ(m) powers the mitochondrial ATP synthase. Further studies revealed that a significant proportion of cellular ATP in MA-10 cells derives from glycolysis. In contrast, primary cells appear to be almost completely dependent on mitochondrial respiration for their energy provision. Inhibitor studies also suggested that the MA-10 ETC is impaired. This work underscores the importance of mitochondrial ATP for hormone-stimulated steroid production in both MA-10 and primary Leydig cells while indicating that caution must be exercised in extrapolating data from tumor cells to primary tissue.  相似文献   

11.
12.
13.
Environmental stress generally disturbs cellular homeostasis. Researchers have hypothesized that chilling injury is linked to a shortage of ATP. However, previous studies conducted on insects exposed to nonfreezing low temperatures presented conflicting results. In this study, we investigated the mitochondrial bioenergetics of Drosophila melanogaster flies exposed to chronic cold stress (4 °C). We assessed mitochondrial oxygen consumption while monitoring the rate of ATP synthesis at various times (0, 1, 2, and 3 days) during prolonged cold stress and at two assay temperatures (25 and 4 °C). We compared organelle responses between cold-susceptible and cold-acclimated phenotypes. Continuous exposure to low temperature provoked temporal declines in the rates of mitochondrial respiration and ATP synthesis. Respiratory control ratios (RCRs) suggested that mitochondria were not critically uncoupled. Nevertheless, after 3 days of continuous cold stress, a sharp decline in the mitochondrial ATP synthesis rate was observed in control flies when they were assayed at low temperature. This change was associated with reduced survival capacity in control flies. In contrast, cold-acclimated flies exhibited high survival and maintained higher rates of mitochondrial ATP synthesis and coupling (i.e., higher RCRs). Adaptive changes due to cold acclimation observed in the whole organism were thus manifested in isolated mitochondria. Our observations suggest that cold tolerance is linked to the ability to maintain bioenergetics capacity under cold stress.  相似文献   

14.
Several phylogeographic studies of seabirds have documented low genetic diversity that has been attributed to bottleneck events or individual capacity for dispersal. Few studies have been done in seabirds on the Brazilian coast and all have shown low genetic differentiation on a wide geographic scale. The Kelp Gull is a common species with a wide distribution in the Southern Hemisphere. In this study, we used mitochondrial and nuclear markers to examine the genetic variability of Kelp Gull populations on the Brazilian coast and compared this variability with that of sub-Antarctic island populations of this species. Kelp Gulls showed extremely low genetic variability for mitochondrial markers (cytb and ATPase) and high diversity for a nuclear locus (intron 7 of the β-fibrinogen). The intraspecific evolutionary history of Kelp Gulls showed that the variability found in intron 7 of the β-fibrinogen gene was compatible with the variability expected under neutral evolution but suggested an increase in population size during the last 10,000 years. However, none of the markers revealed evidence of a bottleneck population. These findings indicate that the recent origin of Kelp Gulls is the main explanation for their nuclear diversity, although selective pressure on the mtDNA of this species cannot be discarded.  相似文献   

15.
Development of induced pluripotent stem cell (iPSC) technology introduced a novel way to derive pluripotent stem cells, but the genetic manipulation required to generate iPSCs may lead to uncontrolled tumorigenesis of the established cells and thus limit clinical feasibility of the technology. Numerous attempts have been made to date, and alternative reprogramming of somatic cells to reactivate cellular plasticity after differentiation has been suggested. As a result, it had become clear that cell-to-cell interactions and specific acellular environments can be utilized for somatic cell reprogramming. In our previous studies, embryonic stem cell (ESC)-like cells could be derived from transforming ovarian cells and fetal fibroblasts by cell-to-cell interaction or specific cell-mediated microenvironmental factor(s). This cellular event was induced without undertaking genetic manipulation of progenitor cells. Several differences were found between the cellular properties of niche-induced, ESC-like cells and those of genetically manipulated iPSCs and the referenced ESCs. Thus, we provided evidence that terminally differentiated somatic cells either acquire pluripotency-like activity or possess cellular and genetic plasticity under a specific microenvironment and/or cell-to-cell interaction. In this minireview, we discuss derivation of stem cell-like cells under specific microenvironmental conditions in terms of technical perspectives and limitations.  相似文献   

16.
17.
The regulation of oxidative phosphorylation was studied with digitonin-treated epididymal bull spermatozoa in which mitochondria are directly accessible to low molecular compounds in the extracellular medium. Due to the high extramitochondrial ATPase activity in this cell preparation, it was possible to stimulate respiration to a small extent only by added hexokinase in the presence of glucose and adenine nucleotides. Added pyruvate kinase plus phosphoenol pyruvate, however, strongly suppressed the respiration. Under these conditions, the respiration was found to depend on the extramitochondrial [ATP]/[ADP] ratio in the range of 1-100. The contribution of the adenine nucleotide translocator to this dependence was determined by titration with the irreversible inhibitor carboxyatractyloside in the presence of ADP. Using lactate plus malate as substrate, the active state respiration was controlled to about 30% by the translocator, whereas 12 and 4% were determined in the presence of L-glycerol-3-phosphate and malate alone, respectively. In order to compare the results with those for intact cells, the adenine nucleotide patterns were determined in intact and digitonin-treated spermatozoa under conditions of controlled respiration in the presence of vanadate and carboxyatractyloside, respectively. About 21% of total cellular adenine nucleotides were found in digitonin-treated cells representing the mitochondrial compartment. While allowing for the intramitochondrial amount of adenine nucleotides, the cytosolic [ATP]/[ADP] ratio was estimated to be 6-times higher than the mitochondrial ratio in intact cells. It is concluded from the data presented that the principal mechanism by which oxidative phosphorylation in sperm mitochondria is regulated via the extramitochondrial [ATP]/[ADP] ratio is the same as that demonstrated for other isolated mitochondria.  相似文献   

18.
Rat lactotrope cells in primary cultures have a higher intracellular Cl- concentration ([Cl-]i) than that predicted by a passive distribution across the membrane. This suggests that active cellular mechanisms ensure this ionic equilibrium. In this study, we examined the interactions between pHi, [Cl-]i regulation and cell energetics. We analyzed: 1. the interactions between extracellular Cl- concentrations, [Cl-]i and cellular energy; 2. the influence of [Cl-]i on respiratory chain function; 3. the correlation with glycolysis and; 4. the role played by pHi in these cellular mechanisms. We show that low [Cl-]i decreases ATP cell content, ATP/ADP ratio and modify phosphorylative oxidations. ATP production is rather due to the anaerobic pathway of the glucose metabolism than the aerobic one and depends also on other metabolic substrates among which glutamine probably has a special role. Finally, pHi appears as a determinant in the balance between aerobic and anaerobic pathways. These results are discussed in relation to the role of Cl- in normal and pathological (effect of hypoxia on mature and immature neurons) cell situations.  相似文献   

19.
20.
The digitonin method for the separation of cytosolic and mitochondrial fractions was applied to liver cells isolated from foetal rats. The cytosolic [ATP]/[ADP] ratio approximately doubles during the last 4 days of gestation, whereas the mitochondrial ratio remains constant. In the presence of oligomycin and added glucose, the cytosolic [ATP]/[ADP] ratio does not increase with age, but is still considerably higher than the mitochondrial ratio. Without added glucose, and when the glycogen content of foetal liver is still very low (more than 3 days before birth), the cytosolic [ATP]/[ADP] ratio in the presence of oligomycin becomes very low and equal to the mitochondrial ratio. It is concluded that the increasein the cytosolic [ATP]/[ADP] ratio during the last 4 days of gestation is solely due to enhanced mitochondrial activity in this period. Atractyloside and bongkrekic acid do not influence the O2 consumption, nor the [ATP]/[ADP] ratios in either compartment of foetal liver cells. Respiration of isolated foetal mitochondria, however, is strongly inhibited by both compounds. The implications of these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号