首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously demonstrated that the induction of heme oxygenase-1 (EC 1.14.99.3) plays a protective role for mammalian cells against oxidative stress. Here, we investigated for the first time the possible role of heme oxygenase-1 as an antioxidant defense in leaves of soybean plants. Treatment with 200 microM Cd during 48 h caused a 70% increase in thiobarbituric acid reactive substances, whereas GSH decreased 67%, guaiacol peroxidase and total superoxide dismutase also inhibited 49% and 46%, respectively. Two hundred micromolar of Cd produced the overexpression of heme oxygenase-1, as well as a 4.5-fold enhancement of its activity. Administration of biliverdin partially prevented the effects caused by Cd. Pretreatment with Zn protoporphyrin IX, a potent inhibitor of heme oxygenase, expectedly decreased heme oxygenase-1 activity to half. When the inhibitor was given before Cd, it completely prevented the enzyme induction increasing the levels of oxidative stress parameters. Collectively, these results indicated that although plant heme oxygenases share little homology to heme oxygenases from non-plant species, they also play an important protective role against oxidative cell damage.  相似文献   

2.
AimsMenadione, a redox-cycling quinone known to cause oxidative stress, binds to reduced glutathione (GSH) to form glutathione S-conjugate. Glutathione S-conjugates efflux is often mediated by multidrug-resistance-associated protein (MRP). We investigated the effect of a transporter inhibitor, MK571 (3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid), on menadione-induced oxidative stress in bovine aortic endothelial cells (BAECs).Main methodsBAECs were treated with menadione and MK571, and cell viability was measured. Modulation of intracellular GSH levels was performed with buthionine sulfoximine and GSH ethyl ester treatments. Intracellular superoxide was estimated by dihydroethidium oxidation using fluorescence microscopy or flow cytometry. Expression of MRP was determined by flow cytometry using phycoerythrin-conjugated anti-MRP monoclonal antibody.Key findingsIntracellular GSH depletion by buthionine sulfoximine promoted the loss of viability of BAECs exposed to menadione. Exogenous GSH, which does not permeate the cell membrane, or GSH ethyl ester protected BAECs against the loss of viability induced by menadione. The results suggest that GSH binds to menadione outside the cells as well as inside. Pretreatment of BAECs with MK571 dramatically increased intracellular levels of superoxide generated from menadione, indicating that menadione may accumulate in the intracellular milieu. Finally, we found that MK571 aggravated menadione-induced toxicity in BAECs and that MRP levels were increased in menadione-treated cells.SignificanceWe conclude that MRP plays a vital role in protecting BAECs against menadione-induced oxidative stress, presumably due to its ability to transport glutathione S-conjugate.  相似文献   

3.
The sedentary habit of plants means that they must stand and fight environmental stresses that their mobile animal cousins can avoid. A range of these abiotic stresses initiate the production in plant cells of reactive oxygen and nitrogen species that ultimately lead to oxidative damage affecting the yield and quality of plant products. A complex network of enzyme systems, producing and quenching these reactive species operate in different organelles. It is the integration of these compartmented defense systems that coordinates an effective response to the various stresses. Future attempts to improve plant growth or yield must consider the complexity of inter-organelle signaling and protein targeting if they are to be successful in producing plants with resistance to a broad range of stresses. Here we highlight the role of pre-oxidant, antioxidant, and post-oxidant defense systems in plant mitochondria and the potential role of proteins targeted to both mitochondria and chloroplasts, in an integrated defense against oxidative damage in plants.  相似文献   

4.
beta-Carbolines are tricyclic nitrogen heterocycles formed in plants and animals as Maillard reaction products between amino acids and reducing sugars or aldehydes. They are being detected increasingly in human tissues, and their physiological roles need to be understood. Two beta-carboline carboxylates have been reported to accumulate in the human eye lens. We report here on the identification of another beta-carboline, namely 1-methyl-1-vinyl -2, 3,4-trihydro-beta-carboline-3-carboxylic acid, in the lenses of some cataract patients from India. Analysis of these three lenticular beta-carbolines using photodynamic and antioxidant assays shows all of them to be inert as sensitizers and effective as antioxidants; they quench singlet oxygen, superoxide and hydroxyl radicals and inhibit the oxidative formation of higher molecular weight aggregates of the test protein, eye lens gamma-crystallin. Such antioxidative ability of beta-carbolines is of particular relevance to the lens, which faces continual photic and oxidative stress. The beta-carboline diacid IV is also seen to display an unexpected ability of inhibiting the thermal coagulation of gamma-crystallin and the dithiothreitol-induced precipitation of insulin. These results offer experimental support to earlier suggestions that one of the roles that the beta-carbolines have is to offer protection against oxidative stress to the human tissues where they accumulate.  相似文献   

5.
6.
In aerobic organisms, oxygen is essential for efficient energy production but paradoxically, produces chronic toxic stress in cells. Diverse protective systems must exist to enable adaptation to oxidative environments. Oxidative stress (OS) results when production of reactive oxidative species (ROS) exceeds the capacity of cellular antioxidant defenses to remove these toxic species. Epidemiological and clinical studies have linked environmental factors such as diet and lifestyle to cancer, diabetes, atherosclerosis, and neurodegenerative disorders. All of these conditions, as well as the aging process, are associated with OS due to elevation of ROS or insufficient ROS detoxification. Many environmental pollutants engage signaling pathways that are activated in response to OS. The same sequences of events are also associated with the etiology and early pathology of many chronic diseases. Investigations of oxidative responses in different in vivo models suggest that, in complex organisms such as mammals, organs and tissues contain distinct antioxidant systems, and this may form the basis for differential susceptibility to environmental toxic agents Thus, understanding the pathways leading to the induction of antioxidant responses will enable development of strategies to protect against oxidative damage. We shall review evidence of organ-specific antioxidant responses elicited by environmental pollutants in humans and animal models.  相似文献   

7.
Exposure to high concentrations of glucose and insulin results in insulin resistance of metabolic target tissues, a characteristic feature of type 2 diabetes. High glucose has also been associated with oxidative stress, and increased levels of reactive oxygen species have been proposed to cause insulin resistance. To determine whether oxidative stress contributes to insulin resistance induced by hyperglycemia in vivo, nondiabetic rats were infused with glucose for 6 h to maintain a circulating glucose concentration of 15 mM with and without coinfusion of the antioxidant N-acetylcysteine (NAC), followed by a 2-h hyperinsulinemic-euglycemic clamp. High glucose (HG) induced a significant decrease in insulin-stimulated glucose uptake [tracer-determined disappearance rate (Rd), control 41.2 +/- 1.7 vs. HG 32.4 +/- 1.9 mg. kg-1. min-1, P < 0.05], which was prevented by NAC (HG + NAC 45.9 +/- 3.5 mg. kg-1. min-1). Similar results were obtained with the antioxidant taurine. Neither NAC nor taurine alone altered Rd. HG caused a significant (5-fold) increase in soleus muscle protein carbonyl content, a marker of oxidative stress that was blocked by NAC, as well as elevated levels of malondialdehyde and 4-hydroxynonenal, markers of lipid peroxidation, which were reduced by taurine. In contrast to findings after long-term hyperglycemia, there was no membrane translocation of novel isoforms of protein kinase C in skeletal muscle after 6 h. These data support the concept that oxidative stress contributes to the pathogenesis of hyperglycemia-induced insulin resistance.  相似文献   

8.
9.
Loss of parkin function is linked to autosomal recessive juvenile parkinsonism. Here we show that proteotoxic stress and short C-terminal truncations induce misfolding of parkin. As a consequence, wild-type parkin was depleted from a high molecular weight complex and inactivated by aggregation. Similarly, the pathogenic parkin mutant W453Stop, characterized by a C-terminal deletion of 13 amino acids, spontaneously adopted a misfolded conformation. Mutational analysis indicated that C-terminal truncations exceeding 3 amino acids abolished formation of detergent-soluble parkin. In the cytosol scattered aggregates of misfolded parkin contained the molecular chaperone Hsp70. Moreover, increased expression of chaperones prevented aggregation of wild-type parkin and promoted folding of the W453Stop mutant. Analyzing parkin folding in vitro indicated that parkin is aggregation-prone and that its folding is dependent on chaperones. Our study demonstrates that C-terminal truncations impede parkin folding and reveal a new mechanism for inactivation of parkin.  相似文献   

10.
Reactive oxygen species (ROS) play an important role in physiological processes, but - when being in excess - ROS cause oxidative damage to molecules. Under physiological conditions, the production and detoxification of ROS are more-or-less balanced. Also in the thyroid, ROS and free radicals participate in physiological and pathological processes in the gland. For example, hydrogen peroxide (H2O2) is crucial for thyroid hormone biosynthesis, acting at different steps of the process. Additionally, H2O2 is believed to participate in the Wolff-Chaikoff's effect, undergoing in conditions of iodide excess in the thyroid. Much evidence has been accumulated indicating that oxidative stress is involved in pathomechanism of thyroid disease, e.g., Graves' disease, goiter formation or thyroid cancer. Melatonin (N-acetyl-5-methoxytryptamine) - the main secretory product of the pineal gland - is a well-known antioxidant and free radical scavenger, widely distributed in the organism. Mutual relationships between the pineal gland and the thyroid have - for a long time - been a subject of intensive research. The abundant to-date's evidence relates mostly to the inhibitory action of melatonin on the thyroid growth and function and - to a lesser extent - to the stimulatory effects of thyroid hormones on the pineal gland. It is highly probable that under physiological conditions melatonin and, possibly, other antioxidants regulate ROS generation for thyroid hormone synthesis. We believe that melatonin may protect against extensive oxidative damage in the course of certain thyroid disorders or in case of a harmful action of some external factors on the thyroid. Thus, oxidative damage and the protective action of antioxidants, melatonin included, may occur during both physiological and pathological processes in the thyroid, however, this assumption, requires further studies.  相似文献   

11.
12.
Reactive oxygen species have been implicated in the pathogenesis of acute pancreatitis. Few studies have focused on the loss of endogenous antioxidants and molecular oxidative damage. Two acute pancreatitis models in rats; taurocholate (3% intraductal infusion) and cerulein (10 microg/kg/h), were used to study markers of oxidative stress: Glutathione, ascorbic acid, and their oxidized forms (glutathione disulfide and dehydroascorbic acid), malondialdehyde, and 4-hydroxynoneal in plasma and pancreas, as well as 7-hydro-8-oxo-2'-deoxyguanosine in pancreas. In both models, pancreatic glutathione depleted by 36-46% and pancreatic ascorbic acid depleted by 36-40% (p <.05). In the taurocholate model, plasma glutathione was depleted by 34% (p <.05), but there were no significant changes in plasma ascorbic acid or in plasma and pancreas dehydroascorbic acid, malondialdehyde, and 4-hydroxynoneal, and no significant changes in the pancreas glutathione disulfide/glutathione ratio. While pancreas glutathione disulfide/glutathione ratio increased in the cerulein model, there were no significant changes in plasma glutathione, plasma, or pancreas ascorbic acid, dehydroascorbic acid, 4-hydroxynoneal, and malondialdehyde, or in pancreas 7-hydro-8-oxo-2'-deoxyguanosine. Reactive oxygen species have a minor role in the intermediate stages of pancreatitis models.  相似文献   

13.
Nitric oxide, produced from exogenous NO donor, sodium nitroprusside, and hydrogen peroxide exerted antagonistic effects on tobacco leaves at micromolar concentrations but induced synergistic effects at millimolar concentrations. During H2O2-induced oxidative stress, low concentrations of NO inhibited lipid peroxidation, counteracted the fragmentation of total DNA, and prevented accumulation of soluble proteins in Nicotiana plumbaginifolia cells. When applied at high concentrations, NO induced the caspase-like activity, promoted degradation of DNA and soluble proteins, and reduced ATP synthesis. The results are consistent with the hypothesis that NO performs a dual role in plants, acting as antioxidant (scavenger of reactive oxygen species) and as a signaling messenger. There are grounds to believe that, irrespective of the mechanism involved, nitric oxide performs a protective role during oxidative stress in tobacco leaves, because even high concentrations of NO exerted no immediate toxic effect but induced the programmed cell death through the activation of caspase-like proteases.  相似文献   

14.
DNA damage is related to a variety of degenerative diseases such as cancer, atherosclerosis and neurodegenerative diseases, depending on the tissue affected. Increasing evidence indicates that reactive oxygen species (ROS) play a key role in the pathogenesis of primary open angle glaucoma (POAG), the main cause of irreversible blindness worldwide. Oxidative DNA damage is significantly increased in the ocular epithelium regulating aqueous humor outflow, i.e., the trabecular meshwork (TM), of glaucomatous patients compared to controls. The pathogenic role of ROS in glaucoma is supported by various experimental findings, including (a) resistance to aqueous humor outflow is increased by hydrogen peroxide by inducing TM degeneration; (b) TM possesses remarkable antioxidant activities, mainly related to superoxide dismutase-catalase and glutathione pathways that are altered in glaucoma patients; and (c) intraocular-pressure increase and severity of visual-field defects in glaucoma patients parallel the amount of oxidative DNA damage affecting TM. Vascular alterations, which are often associated with glaucoma, could contribute to the generation of oxidative damage. Oxidative stress, occurring not only in TM but also in retinal cells, appears to be involved in the neuronal cell death affecting the optic nerve in POAG. The highlighting of the pathogenic role of ROS in POAG has implications for the prevention of this disease as indicated by the growing number of studies using genetic analyses to identify susceptible individuals and of clinical trials testing the efficacy of antioxidant drugs for POAG management.  相似文献   

15.
16.
Opiate abuse alters the progression of human immunodeficiency virus and may increase the risk of neuroAIDS. As neuroAIDS is associated with altered microglial reactivity, the combined effects of human immunodeficiency virus-Tat and morphine were determined in cultured microglia. Specifically, experiments determined the effects of Tat and morphine on microglial-free radical production and oxidative stress, and on cytokine release. Data show that combined Tat and morphine cause early and synergistic increases in reactive oxygen species, with concomitant increases in protein oxidation. Furthermore, combined Tat and morphine, but not Tat or morphine alone, cause reversible decreases in proteasome activity. The effects of morphine on free radical production and oxidative stress are prevented by pre-treatment with naloxone, illustrating the important role of opioid receptor activation in these phenomena. While Tat is well known to induce cytokine release from cultured microglia, morphine decreases Tat-induced release of the cytokines tumor necrosis factor-α and interleukin-6, as well as the chemokine monocyte chemoattractant protein-1 (MCP-1). Finally, experiments using the reversible proteasome inhibitor MG115 show that temporary, non-cytotoxic decreases in proteasome activity increase protein oxidation and decrease tumor necrosis factor-α, interleukin-6, and MCP-1 release from microglia. Taken together, these data suggest that oxidative stress and proteasome inhibition may be involved in the immunomodulatory properties of opioid receptor activation in microglia.  相似文献   

17.
Chlorpyrifos (CPF), an organophosphate insecticide has a wider application throughout the world to protect agricultural crops and vegetables from insects. Polyphenolic compounds are considered as beneficial against toxicities induced by organophosphates. The present study was conducted to understand the neuroprotective role of quercetin in chlorpyrifos‐induced apoptotic events in rats. Twenty‐four male Sprague Dawley rats weighing 170 to 200 g were divided into four groups viz: Control, chlorpyrifos treated (13.5 mg/kg body wt. alternate day), quercetin treated (50 mg/kg body wt. every day) and combined chlorpyrifos + quercetin treated. All the treatments were carried out for a total duration of 60 days. Protein carbonyl content and acetylcholinesterase activity were estimated in serum along with cerebrum and cerebellum to ascertain neurotoxicity. Further, for appraisal of neurodegeneration as a consequence of apoptosis, protein expressions of Bcl‐2, Bax, cytochrome c, caspase‐8, and caspase‐9 were assessed. The results showed that protein carbonyl contents were markedly increased in both serum and brain tissues (cerebrum and cerebellum) of chlorpyrifos‐treated rats when compared with control group and were appreciably improved upon simultaneous supplementation with quercetin. Further, chlorpyrifos treatment revealed a significant decrease in the enzyme activity of acetylcholinesterase in serum as well as in cerebrum and cerebellum, which however was increased upon concomitant treatment with quercetin. In chlorpyrifos‐treated animals, we have observed a significant decrease in the protein expression level of Bcl‐2, but a remarkable increase in the expression levels of Bax, cytochrome c, caspase‐8, and caspase‐9 in both cerebrum and cerebellum. Interestingly, when chlorpyrifos‐treated animals were supplemented with quercetin, a significant increase in the expression of Bcl‐2 and an appreciable decline in the expression levels of Bax, cytochrome c, caspase‐8, and caspase‐9 was observed. In conclusion, the present study advocates that quercetin may prove to be a useful candidate in containing the oxidative‐induced apoptotic events during chlorpyrifos exposure.  相似文献   

18.
Homocysteine potentiates β-amyloid neurotoxicity: role of oxidative stress   总被引:5,自引:0,他引:5  
The cause of neuronal degeneration in Alzheimer's disease (AD) has not been completely clarified, but has been variously attributed to increases in cytosolic calcium and increased generation of reactive oxygen species (ROS). The beta-amyloid fragment (Abeta) of the amyloid precursor protein induces calcium influx, ROS and apoptosis. Homocysteine (HC), a neurotoxic amino acid that accumulates in neurological disorders including AD, also induces calcium influx and oxidative stress, which has been shown to enhance neuronal excitotoxicity, leading to apoptosis. We examined the possibility that HC may augment Abeta neurotoxicity. HC potentiated the Abeta-induced increase in cytosolic calcium and apoptosis in differentiated SH-SY-5Y human neuroblastoma cells. The antioxidant vitamin E and the glutathione precursor N-acetyl-L-cysteine blocked apoptosis following cotreatment with HC and Abeta, indicating that apoptosis is associated with oxidative stress. These findings underscore that moderate accumulation of excitotoxins at concentrations that alone do not appear to initiate adverse events may enhance the effects of other factors known to cause neurodegeneration such as Abeta.  相似文献   

19.
目的 :探讨 β淀粉样蛋白 (Aβ)与氧应激损伤的相互关系及脑下垂体腺苷环化酶激活多肽 2 7(PACAP 2 7)对抗氧应激致神经瘤细胞损伤的作用机理。方法 :体外培养第 15 0代Neuro 2a细胞 ,MTT法检测细胞存活率 ,Heochest332 5 8特异细胞核染色观察凋亡小体 ,提取基因组DNA鉴定细胞死亡方式及基因组内小片段含量。结果 :过氧化氢 (H2 O2 )处理接种 2 4h的Neuro 2a细胞 2 4h后 ,浓度相关地使细胞存活率下降 ,10mol·L-1时有明显的凋亡特征出现 ;与 2 5mol·L-1的Aβ2 5-35共同处理 2 4h可以使H2 O2 损伤神经元的ED50 降低至 1/10 ;PACAP 2 7( 0 .1(mol·L-1,1d加药 1次 ,共 2次 )对H2 O2 所致的细胞损伤有显著的保护作用 ,可以提高细胞的存活率 ,降低基因组小片段DNA的含量 ;PACAP受体拮抗剂PACAP 6 2 7( 10 0mol·L-1,与PACAP同时加药 )不能拮抗PACAP 2 7的保护作用。结论 :氧应激与Aβ在神经毒性方面有协同作用 ;PACAP参与对抗H2 O2 的神经毒性时 ,不通过受体激活。  相似文献   

20.
To test the deterioration of endothelial function during the progression of diabetes, shear stress-induced dilation (SSID; 10, 20, and 40 dyn/cm(2)) was determined in isolated mesenteric arteries (80-120 μm in diameter) of 6-wk (6W), 3-mo (3M), and 9-mo (9M)-old male db/db mice and their wild-type (WT) controls. Nitric oxide (NO)-mediated SSID was comparable in 6W WT and db/db mice, but the dilation was significantly reduced in 3M db/db mice and declined further in 9M db/db mice. Vascular superoxide production was progressively increased in 3M and 9M db/db mice, associated with an increased expression of NADPH oxidase. Inhibition of NADPH oxidase significantly improved NO-mediated SSID in arteries of 3M, but not in 9M, db/db mice. Although endothelial nitric oxide synthase (eNOS) expression was comparable in all groups, a progressive reduction in shear stress-induced eNOS phosphorylation existed in vessels of 3M and 9M db/db mice. Moreover, inducible NOS (iNOS) that was not detected in WT, nor in 6W and 3M db/db mice, was expressed in vessels of 9M db/db mice. A significantly increased expression of nitrotyrosine in total protein and immunoprecipitated eNOS was also found in vessels of 9M db/db mice. Thus, impaired NO bioavailability plays an essential role in the endothelial dysfunction of diabetic mice, which becomes aggravated when endothelial nitrosative stress is further activated via perhaps, an additional iNOS-mediated pathway during the progression of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号