首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Liu G  Min H  Yue S  Chen CZ 《PloS one》2008,3(10):e3592

Background

Mature miRNAs can often be classified into large families, consisting of members with identical seeds (nucleotides 2 through 7 of the mature miRNAs) and highly homologous ∼21-nucleotide (nt) mature miRNA sequences. However, it is unclear whether members of a miRNA gene family, which encode identical or nearly identical mature miRNAs, are functionally interchangeable in vivo.

Methods and Findings

We show that mir-181a-1, but not mir-181c, can promote CD4 and CD8 double-positive (DP) T cell development when ectopically expressed in thymic progenitor cells. The distinct activities of mir-181a-1 and mir-181c are largely determined by their unique pre-miRNA loop nucleotides—not by the one-nucleotide difference in their mature miRNA sequences. Moreover, the activity of mir-181a-1 on DP cell development can be quantitatively influenced by nucleotide changes in its pre-miRNA loop region. We find that both the strength and the functional specificity of miRNA genes can be controlled by the pre-miRNA loop nucleotides. Intriguingly, we note that mutations in the pre-miRNA loop regions affect pre-miRNA and mature miRNA processing, but find no consistent correlation between the effects of pre-miRNA loop mutations on the levels of mature miRNAs and the activities of the mir-181a-1/c genes.

Conclusions

These results demonstrate that pre-miRNA loop nucleotides play a critical role in controlling the activity of miRNA genes and that members of the same miRNA gene families could have evolved to achieve different activities via alterations in their pre-miRNA loop sequences, while maintaining identical or nearly identical mature miRNA sequences.  相似文献   

3.
4.
5.

Background

We profiled the expression of circulating microRNAs (miRNAs) in mice using Illumina small RNA deep sequencing in order to identify the miRNAs that may potentially be used as biomarkers to distinguish between gram-negative and gram-positive bacterial infections.

Results

Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) were used to induce bacterial infection in mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14 + Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer. Following exposure to gram-negative bacteria alone, no differentially expressed miRNA was found in the injection, cut, or skin graft models. Exposure to mixed bacteria induced a similar expression pattern of the circulating miRNAs to that induced by gram-positive bacterial infection. Upon gram-positive bacterial infection, 9 miRNAs (mir-193b-3p, mir-133a-1-3p, mir-133a-2-3p, mir-133a-1-5p, mir-133b-3p, mir-434-3p, mir-127-3p, mir-676-3p, mir-215-5p) showed upregulation greater than 4-fold with a p-value < 0.01. Among them, mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p presented the most common miRNA targets expressed in the mice exposed to gram-positive bacterial infection.

Conclusions

This study identified mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p as potential circulating miRNAs for gram-positive bacterial infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0106-y) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

MicroRNAs (miRNAs) are small RNA molecules that regulate the expression of corresponding messenger RNAs (mRNAs). Variations in the level of expression of distinct miRNAs have been observed in the genesis, progression and prognosis of multiple human malignancies. The present study was aimed to investigate the association between four highly studied miRNA polymorphisms (mir-146a rs2910164, mir-196a2 rs11614913, mir-149 rs2292832 and mir-499 rs3746444) and cancer risk by using a two-sided meta-analytic approach.

Methods

An updated meta-analysis based on 53 independent case-control studies consisting of 27573 cancer cases and 34791 controls was performed. Odds ratio (OR) and 95% confidence interval (95% CI) were used to investigate the strength of the association.

Results

Overall, the pooled analysis showed that mir-196a2 rs11614913 was associated with a decreased cancer risk (OR = 0.846, P = 0.004, TT vs. CC) while other miRNA SNPs showed no association with overall cancer risk. Subgroup analyses based on type of cancer and ethnicity were also performed, and results indicated that there was a strong association between miR-146a rs2910164 and overall cancer risk in Caucasian population under recessive model (OR = 1.274, 95%CI = 1.096–1.481, P = 0.002). Stratified analysis by cancer type also associated mir-196a2 rs11614913 with lung and colorectal cancer at allelic and genotypic level.

Conclusions

The present meta-analysis suggests an important role of mir-196a2 rs11614913 polymorphism with overall cancer risk especially in Asian population. Further studies with large sample size are needed to evaluate and confirm this association.  相似文献   

7.
8.

Background

Lens regeneration in adult newts occurs via transdifferentiation of the pigment epithelial cells (PECs) of the dorsal iris. The same source of cells from the ventral iris is not able to undergo this process. In an attempt to understand this restriction we have studied in the past expression patterns of miRNAs. Among several miRNAs we have found that mir-148 shows an up-regulation in the ventral iris, while members of the let-7 family showed down-regulation in dorsal iris during dedifferentiation.

Methodology/Principal Findings

We have performed gain- and loss-of–function experiments of mir-148 and let-7b in an attempt to delineate their function. We find that up-regulation of mir-148 caused significant decrease in the proliferation rates of ventral PECs only, while up-regulation of let-7b affected proliferation of both dorsal and ventral PECs. Neither miRNA was able to affect lens morphogenesis or induction. To further understand how this effect of miRNA up-regulation is mediated we examined global expression of miRNAs after up-regulation of mir148 and let-7b. Interestingly, we identified a novel level of mirRNA regulation, which might indicate that miRNAs are regulated as a network.

Conclusion/Significance

The major conclusion is that different miRNAs can control proliferation in the dorsal or ventral iris possibly by a different mechanism. Of interest is that down-regulation of the let-7 family members has also been documented in other systems undergoing reprogramming, such as in stem cells or oocytes. This might indicate that reprogramming during newt regeneration shares common molecular signatures with reprogramming in stem or germ cells. On the other hand that miRNAs can regulate the levels of other miRNAs is a novel level of regulation, which might provide new insights on their function.  相似文献   

9.
10.

Background

Tissues respond to injury by releasing acute phase reaction (APR) proteins which regulate inflammation and angiogenesis. Among the genes upregulated in wounded tissues are tumor necrosis factor-alpha (TNFα) and the acute phase reactant orosomucoid-1 (ORM1). ORM1 has been shown to modulate the response of immune cells to TNFα, but its role on injury- and TNFα-induced angiogenesis has not been investigated. This study was designed to characterize the role of ORM1 in the angiogenic response to injury and TNFα.

Methods and Results

Angiogenesis was studied with in vitro, ex vivo, and in vivo angiogenesis assays. Injured rat aortic rings cultured in collagen gels produced an angiogenic response driven by macrophage-derived TNFα. Microarray analysis and qRT-PCR showed that TNFα and ORM1 were upregulated prior to angiogenic sprouting. Exogenous ORM1 delayed the angiogenic response to injury and inhibited the proangiogenic effect of TNFα in cultures of aortic rings or isolated endothelial cells, but stimulated aortic angiogenesis over time while promoting VEGF production and activity. ORM1 inhibited injury- and TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in aortic rings, but not of NFκB. This effect was injury/TNFα-specific since ORM1 did not inhibit VEGF-induced signaling, and cell-specific since ORM1 inhibited TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in macrophages and endothelial cells, but not mural cells. Experiments with specific inhibitors demonstrated that the MEK/ERK pathway was required for angiogenesis. ORM1 inhibited angiogenesis in a subcutaneous in vivo assay of aortic ring-induced angiogenesis, but stimulated developmental angiogenesis in the chorioallantoic membrane (CAM) assay.

Conclusion

ORM1 regulates injury-induced angiogenesis in a time- and context-dependent manner by sequentially dampening the initial TNFα-induced angiogenic response and promoting the downstream stimulation of the angiogenic process by VEGF. The context-dependent nature of ORM1 angioregulatory function is further demonstrated in the CAM assay where ORM1 stimulates developmental angiogenesis without exerting any inhibitory activity.  相似文献   

11.

Background

Vascular endothelial growth factor (VEGF) has previously been shown to upregulate the expression of the endogenous calcineurin inhibitor, regulator of calcineurin 1, variant 4 (RCAN1.4). The aim of this study was to determine the role and regulation of VEGF-mediated RCAN1.4 expression, using human dermal microvascular endothelial cells (HDMECs) as a model system.

Methodology/Principal Findings

We show that VEGF is able to induce RCAN1.4 expression during cellular proliferation and differentiation, and that VEGF-mediated expression of RCAN1.4 was inhibited by the use of inhibitors to protein kinase C (PKC) and calcineurin. Further analysis revealed that siRNA silencing of PKC-delta expression partially inhibited VEGF-stimulated RCAN1.4 expression. Knockdown of RCAN1.4 with siRNA resulted in a decrease in cellular migration and disrupted tubular morphogenesis when HDMECs were either stimulated with VEGF in a collagen gel or in an endothelial/fibroblast co-culture model of angiogenesis. Analysis of intracellular signalling revealed that siRNA mediated silencing of RCAN1.4 resulted in increased expression of specific nuclear factor of activated T-cells (NFAT) regulated genes.

Conclusions/Significance

Our data suggests that RCAN1.4 expression is induced by VEGFR-2 activation in a Ca2+ and PKC-delta dependent manner and that RCAN1.4 acts to regulate calcineurin activity and gene expression facilitating endothelial cell migration and tubular morphogenesis.  相似文献   

12.
13.

Background

The morbidity and mortality of cancer increase remarkably every year. It''s a heavy burden for family and society. The detection of prognostic biomarkers can help to improve the theraputic effect and prolong the lifetime of patients. microRNAs have an influential role in cancer prognosis. The results of articles discussing the relationship between microRNA polymorphisms and cancer prognosis are inconsistent.

Methods

We conduct a meta-analysis of 19 publications concerning the association of four common polymorphisms, mir-146a rs2910164, mir-149 rs2292832, mir-196a2 rs11614913 and mir-499 rs3746444, with cancer prognosis. Pooled Hazard Ratios with 95% Confidence Intervals for the relationship between four genetic polymorphisms and Overall Survival, Recurrence-free Survival, Disease-free survival, recurrence are calculated. Subgroup analysis by population and type of tumor are conducted.

Results

GG genotype of mir-146a may be the protective factor for overall survival, especially in Caucasian population. C-containing genotypes of mir-196a2 act as a risk role for overall survival. The same result exists in Asian population, in Non-Small Cell Lung Cancer and digestive cancer. The patients with C allele of mir-149 have a better overall survival, especially in Non-Small Cell Lung Cancer. No significant results are obtained for mir-499 polymorphisms.

Conclusions

Genetic polymorphisms in mir-146a, mir-196a2 and mir-149 may be associated with overall survival. This effect varies with different types of cancer. Genetic polymorphism in mir-499 may have nothing to do with cancer prognosis.  相似文献   

14.
15.
16.
17.
18.

Background

Two mature miRNA species may be generated from the 5’ and 3’ arms of a pre-miRNA precursor. In most cases, only one species remains while the complementary species is degraded. However, co-existence of miRNA-5p and -3p species is increasingly being reported. In this work, we aimed to systematically investigate co-expression of miRNA-5p/3p in colon cancer cells in a genome-wide analysis, and to examine cross-targeting of the dysregulated miRNAs and 5p/3p species.

Results

Four colon cancer cell lines were examined relative to two normal colon tissues. Of the 1,190 miRNAs analyzed, 92 and 36 were found to be up- or down-regulated, respectively, in cancer cells. Nineteen co-expressed miRNA-5p/3p pairs were further identified suggesting frequent 5p/3p co-accumulation in colon cancer cells. Of these, 14 pairs were co-up-regulated and 3 pairs were co-down-regulated indicating concerted 5p/3p dysregulation. Nine dysregulated miRNA pairs fell into three miRNA gene families, namely let-7, mir-8/200 and mir-17, which showed frequent cross-targeting in the metastasis process. Focusing on the let-7d-5p/3p pair, the respectively targeted IGF1R and KRAS were shown to be in a reverse relationship with expression of the respective miRNA, which was confirmed in transient transfection assays using let-7d mimic or inhibitor. Targeting of KRAS by let-7d was previous reported; targeting of IGF1R by let-7d-5p was confirmed in luciferase assays in this study. The findings of let-7d-5p/3p and multiple other miRNAs targeting IGF1R, KRAS and other metastasis-related factors suggest that 5p/3p miRNAs contribute to cross-targeting of multiple cancer-associated factors and processes possibly to evade functional abolishment when any one of the crucial factors are inactivated.

Conclusions

miRNA-5p/3p species are frequently co-expressed and are coordinately regulated in colon cancer cells. In cancer cells, multiple cross-targeting by the miRNAs, including the co-existing 5p/3p species, frequently occurs in an apparent safe-proof scheme of miRNA regulation of important tumorigenesis processes. Further systematic analysis of co-existing miRNA-5p/3p pairs in clinical tissues is important in elucidating 5p/3p contributions to cancer pathogenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0095-x) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

Protein kinases play a central role in tumor progression, regulating fundamental processes such as angiogenesis, proliferation and metastasis. Such enzymes are an increasingly important class of drug target with small molecule kinase inhibitors being a major focus in drug development. However, balancing drug specificity and efficacy is problematic with off-target effects and toxicity issues.

Methodology

We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis.

Conclusions

We deduce that JK-31 reduces the growth of both human endothelial cells and human breast cancer cells in vitro. This novel synthetic molecule has broad implications for development of similar multi-kinase inhibitors with anti-angiogenic and anti-cancer properties. In silico design is an attractive and innovative method to aid such drug discovery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号