首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
External morphology of antennal sensilla on female and male Trichogramma australicum (Hymenoptera : Trichogrammatidae) was examined using scanning electron microscopy. Antennae show strong sexual dimorphism in structure and types of sensilla. The female antenna displays 14 types of sensilla: basiconic capitate peg sensilla (types 1 and 2), campaniform sensilla, chaetica sensilla (types 1–3), coeloconic sensilla, falcate sensilla, placoid sensilla (types 1 and 2), styloconic sensilla and trichoid sensilla (types 1–3). The male antenna displays 12 types of sensilla: basiconic capitate peg sensilla (type 2), campaniform sensilla, chaetica sensilla (types 1–5), coeloconic sensilla, placoid sensilla (type 1), and trichoid sensilla (types 3–5). Falcate and styloconic sensilla occur only on the female antenna. Both sensilla probably are associated with host examination, host discrimination and oviposition behaviour. Male antennal trichoid sensilla types 4 and 5 are probably associated with courtship behaviour, because these types occur only on the male. We propose the term “falcate sensilla” for a unique female antennal sensilla; the number of falcate sensilla may be used for identification of Trichogramma spp. In addition, we report the presence of placoid sensilla type 2 and difference in structure of coeloconic sensilla in T. australicum. Variation in structure and position of antennal sensilla are discussed.  相似文献   

2.
The typology, number and placement of antennal sensilla of the click beetle Melanotus villosus (Geoffroy) (Coleoptera: Elateridae) were studied using scanning electron microscopy. On both the males and females the antennae are made up of the scape, pedicel and nine flagellomeres. Two types of basiconic sensilla, three types of trichoid sensilla, one type of styloconic sensilla, one type of chetoid sensilla, dome-shaped sensilla, grooved pegs, and Böhm sensilla all appear on the antennae of the beetles of both sexes, with the exception of trichoid sensilla type II, whose large number (average of 1635 hairs per antenna) was found only in male beetles. Sensilla trichodea type II evidently respond to the sex pheromone produced by the female beetle. Unlike the other two click beetles, studied up till now, Agriotes obscurus and Limonius aeruginosus, the trichoid and basiconic sensilla of M. villosus, whose proven or assumed function is olfactory, are located predominantly on the flagellomeres ventral extensions. It is assumed that the placement of the olfactory sensilla, mainly on the ventral side of M. villosuss antennae, and their more or less even distribution on the flagellomeres, can be seen as morphological adaptation of this species of insect, whose specific behavioural reaction of olfactory searching is flying, both before and after contact with an odour plume.  相似文献   

3.
The distribution, external morphology, and ultrastructure of various types of sensilla in the antennae of tenebrionid larvae Tenebrio molitor and Zophobas rugipes are studied by means of scanning and transmission electron microscopy. On the antennae of T. molitor there are sensilla of four basic morphological types: basiconic, styloconic, trichoid, and papillate sensilla. On the antennae of Z. rugipes, in addition to the aforementioned ones, there are placoid sensilla. Ultrastructure points to olfactory function of basiconic and placoid sensilla. Other sensillum types are contact chemoreceptors.  相似文献   

4.
The fine structural characteristics of various sensory receptors on the antenna of a millipede, Orthomorphella pekuensis, were observed with field emission scanning electron microscopy. The antenna of this millipede has eight segments, called articles. On the surface of the antenna, there are a variety of sensory receptors, including olfactory and mechanical receptors. According to their morphological and fine structural characteristics, we could identify four basic types of antennal sensillum: chaetiform sensilla (CS), trichoid sensilla (TS), basiconic sensilla (BS) and apical cone sensilla (AS). The BS are divided further into three subtypes: large basiconic sensilla (BS1) on the 5th and 6th articles; small basiconic sensilla (BS2) on the 5th article; and a distinct type of basiconic spiniform sensilla (BS3) on the 7th article. The most prominent sensilla are four large AS on the distal tip of the 8th segment. Based on our results, we conclude that the main function of the CS and TS are related to mechanical reception, and that the BS and AS are likely to function in olfactory reception of volatile odors of plants, as these sensilla have base and apex pores, respectively.  相似文献   

5.
Microstructure and distribution of sensilla were studied in 25 species of caddisflies of the family Rhyacophilidae for the first time. Comparative analysis allowed 13 sensilla types to be identified in members of this family: long grooved trichoid, curved trichoid, chaetoid, mushroom-like pseudoplacoid, forked pseudoplacoid, leaf-like pseudoplacoid, dissected pseudoplacoid, multiforked pseudoplacoid, styloconic, auricillic, coronal, basiconic sensilla, and Böhm’s bristles. The largest variations were found in the pseudoplacoid sensilla. Dissected, leaflike, auricillic, and multiforked sensilla were discovered in the order Trichoptera for the first time. Curved trichoid sensilla can be grouped or assembled into sensory fields. The total number of sensilla per antennal segment decreases towards the antenna apex. Data on the structural diversity of sensilla in groups of fast-evolving species suggest the participation of sensilla structures in the speciation processes.  相似文献   

6.
《Journal of Asia》2020,23(4):1165-1180
Drosophila suzukii is a serious horticultural and quarantine pest, damaging various berry crops. Although the active use of olfactory communication in D. suzukii is well-known, their olfactory sensory system has not been comprehensively reported. Therefore, the present study was carried out to understand the morphology, distribution and ultrastructure of olfactory sensilla present in the antennae and maxillary palps of D. suzukii, through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The olfactory sensilla on the antennae of D. suzukii in both sexes could be classified into three major morphological types, basiconic, trichoid and coeloconic sensilla, according to their shapes. The antennal basiconic sensilla were further divided into three subtypes and the antennal trichoid sensilla into two subtypes, respectively, according to the size of individual sensillum. In contrast to the antennal olfactory sensilla showing diverse morphology, basiconic sensilla was the only type of olfactory sensilla in the maxillary palps of D. suzukii. The basiconic sensilla in the maxillary palps could be further classified into three subtypes, based on their size. Our SEM and TEM observations indicated that multiple nanoscale pores are present on the surface of all types of olfactory sensilla in the antennae and maxillary palps, except coeloconic sensilla. The difference in the morphological types and the distribution of olfactory sensilla suggests that their olfactory functions are different between antennae and maxillary palps in D. suzukii. The results of this study provide useful information for further studies to determine the function of olfactory sensilla in D. suzukii and to understand their chemical communication system.  相似文献   

7.
A comparison was performed of the antennal sensilla of females of four chalcid wasp species Ceratosolen emarginatus Mayr, 1906, Sycophaga sp., Philotrypesis longicaudata Mayr, 1906, and Sycoscapter roxburghi Joseph, 1957, which are specific and obligatory associated with Ficus auriculata (Lour, 1790). The four species exhibit different oviposition strategies in the fig ovules where their offspring hatch and develop. Antennal sensilla morphology was evaluated using scanning electron microscopy. Females of the four species present 11 morphologically similar types of sensilla: trichoid sensilla, sensilla obscura, chaetica sensilla 1 and 2, which all have mechanosensory functions; uniporous basiconic sensilla, which are presumably contact chemosensilla; basiconic capitate peg sensilla, coeloconic sensilla 1, multiporous basiconic and placoid sensilla, which may be regarded as olfactory sensilla, and coeloconic sensilla 2 and 3, which are presumed to be proprioreceptors or pressure receptors. The four species have significant differences in the abundance and arrangement of trichoid sensilla and chaetica sensilla 1 on the flagellum. The coeloconic sensilla and sensilla obscura only occur on the antennae of C. emarginatus that enter figs. The chemosensilla which are presumably involved in host discrimination, i.e., basiconic sensilla, multiporous placoid sensilla and basiconic capitate peg sensilla, are similar in shape and configuration, although they present some differences in abundance. These findings provide practical information on the adaptations of fig wasps and the relationship between multisensory antennae and functions in fig wasp behaviour.  相似文献   

8.
《Journal of Asia》2019,22(1):296-307
Pseudoligosita yasumatsui Viggiani and Subba Rao 1978 (Hymenoptera: Trichogrammatidae) is a common egg parasitoid of rice insect pests. The surface morphology of the antenna and ovipositor on P. yasumatsui was examined using scanning electron microscopy. The antenna of P. yasumatsui is geniculate in shape, hinged at the scape-pedicel joint, approximately 190 μm in length and consists of seven antennomeres. In total, the male and female antennae have ten different types of sensilla: trichoid sensilla type 1, 2, 3, 4, 5, 6, campaniform sensilla, basiconic sensilla, and placoid sensilla type 1 and 2. The flagellum of the female antenna is covered with cuticular pores, which are absent on the male antennal flagellum. The distal extremity of its ovipositor stylet has campaniform sensilla and styloconic sensilla. Trichoid sensilla found on its apical abdomen part may play a role in the host detection and egg placement. The types and distribution of antennal and ovipositor sensilla on the parasitoid were discussed.  相似文献   

9.
The paper analyses the antennal sensilla pattern of 22 species of triatomine bugs (Hemiptera, Reduviidae). The pedicels of species from tribe Rhodniini differ from species of Cavernicolini and Triatomini, mainly by the absence of trichoid and basiconic sensilla and by a greater number of Bristles I. Fifth-instar nymphs of T. sordida and R. pictipes show several differences in sensilla patterns compared with their respective adults. They lack basiconic sensilla and thin-and thick-walled trichoid sensilla over the first flagellar segment and over the proximal half of the second flagellar segment. T. sordida nymphs also lack these sensilla on the pedicel. There appears to be a significant sexual dimorphism in relation to trichoid sensilla in T. sordida, but not in R. pictipes. There exists a remarkable correlation between the density of basiconic and trichoid sensilla on the pedicels of different species, and a crude estimation of habitat range assessed as number of habitat types reported for each species.  相似文献   

10.
Structure and distribution of sensilla were studied in sixteen species of the caddisfly family Philopotamidae. Their antennae bear numerous curved trichoid and pseudoplacoid sensilla and fewer coronal, styloconic and chaetoid sensilla on the flagellar segments. The most numerous pseudoplacoid sensilla have non-specific localization. The curved trichoid sensilla form clusters ventrally on each antennal segment. Sensilla belonging to coronal, styloconic and chaetoid types have specific positions. Long grooved trichoid sensilla are located nonspecifically in all the studied species. The average number of sensilla per segment decreases from the proximal to distal part of the flagellum. Scapus and pedicellum are devoid of most types of sensilla, however, they bear the Böhm bristles and long trichoid sensilla. A positive correlation between antenna dimensions and its cuticular structures is found.  相似文献   

11.
The labial palpus of the elephant louse Haematomyzus elephantis has six sensilla that represent three different types: trichoid, basiconic, and styloconic. Two rows of basiconic sensilla are situated on the dorsal and ventral surfaces of the rostrum, and each row consists of three sensilla. Male and female antennae have 15–17 trichoid sensilla situated on the scape, pedicel, and three antennal annuli. Both sexes have two sensilla basiconica on the dorsal surface of the pedicel near the junction of the scape and pedicel. Two coeloconic (tuft) sensilla are situated on the antennae of both sexes, one sensillum on each of the last two annuli. There are three plate organs, two on the last annulus and one on the penultimate annulus of the male and female antennae. Sexual dimorphism is exhibited in the male and female antennae, in that the male has about twice as many sensilla basiconica on the apex of the last annulus as does the female. The total number of sensilla basiconica on the apex of the male antennae is at least two times the number that is known to be present in any other species of lice. © 1992 Wiley-Liss, Inc.  相似文献   

12.
《Journal of Asia》2021,24(4):1313-1325
Tetrastichus sp. (Hymenoptera: Eulophidae) is a primary parasitoid of the Metisa plana (Lepidoptera: Psychidae), an oil palm bagworm. The sensilla on the surface of the antenna and ovipositor of Tetrastichus sp. were examined using a scanning electron microscope. The antennae of both male and female Tetrastichus sp. are geniculate in shape and hinged at the scape-pedicel joint. The female antenna is about 200 µm longer than the male antenna. However, the male antenna has an additional flagellomere compared to the female antenna. In total, eight different types of antennal sensilla were observed on the antenna of Tetrastichus sp.: trichoid sensilla type 1, 2, 3, 4, placoid sensilla type 1 and 2, basiconic sensilla, and campaniform sensilla. The antenna of the female Tetrastichus sp. lacks placoid sensilla type 2 and campaniform sensilla. The distribution and abundance of the antennal sensilla were compared between the male and female Tetrastichus sp. and discussed. On the ovipositor stylet of Tetrastichus sp., coeloconic sensilla, styloconic sensilla and campaniform sensilla were observed. Trichoid sensilla were observed at the medial part of the distal extremity of the ovipositor.  相似文献   

13.
Antennal sensilla of Anastrepha fraterculus (Wied.) were examined using scanning electron microscopy. In the flagellum, there are trichoid, basiconic, clavate type I and II, and styloconic sensilla and microtrichia. Only microtrichiae and chaetica sensilla were observed in the scape and pedicel. The number of sensilla in the flagellum was similar between sexes. At the apex there was a higher density of trichoid and an absence of clavate sensilla, while basiconic sensilla were more abundant in the proximal region.  相似文献   

14.
Metaphycus parasaissetiae Zhang & Huang (Hymenoptera: Encyrtidae) is an important adult parasitoid of Parasaissetia nigra Nietner (Hemiptera: Coccoidea). The external morphology of the antennal sensilla of male and female M. parasaissetiae was examined using scanning electron microscopy. The geniculate antennae of male and female M. parasaissetiae were composed of a scape with a basal radicula, a barrel-shaped pedicel, and a long flagellum. Twelve morphologically distinct types of sensilla were identified, including multiporous placoid sensilla, campaniform sensilla, finger-like sensilla, multiporous basiconic sensilla (BS-1), three aporous types of basiconic sensilla (BS-2, BS-3, and BS-4), two types of aporous trichoid sensilla (TS-1 and TS-3), a type of multiporous trichoid sensilla (TS-2), and two types of sensilla chaetica (CH-1 and CH-2). Sex dimorphism in the sensilla composition of M. parasaissetiae is also observed. Major differences between the sexes were found in the number, distribution, shape, structure, and size of the identified sensilla. We also discuss on the functional aspects of these sensilla to elucidate the mechanisms involved in host searching and courtship behavior of M. parasaissetiae.  相似文献   

15.
The morphology and ultrastructure of the olfactory sensilla on the antennae and maxillary palps were investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their responses to five volatile compounds were measured using electroantenogram (EAG) and electropalpogram (EPG) techniques in the pumpkin fruit fly, Bactrocera depressa (Shiraki; Diptera: Tephritidae). Male and female B. depressa displayed distinct morphological types of olfactory sensilla in the antennae and maxillary palps, with predominant populations of trichoid, basiconic, and coeloconic sensilla. Basiconic sensilla, the most abundant type of olfactory sensilla in the antennae, could be further classified into two different types. In contrast, the maxillary palps exhibited predominant populations of a single type of curved basiconic sensilla. High‐resolution SEM observation revealed the presence of multiple nanoscale wall‐pores on the cuticular surface of trichoid and basiconic sensilla, indicating that their primary function is olfactory. In contrast, coeloconic sensilla displayed several longitudinal grooves around the sensillum peg. The TEM observation of individual antennal olfactory sensilla indicates that the basiconic sensilla are thin‐walled, while the trichoid sensilla are thick‐walled. The profile of EAG responses of male B. depressa was different from their EPG response profile, indicating that the olfactory function of maxillary palps is different from that of antennae in this species. The structural and functional variation in the olfactory sensilla between antennae and maxillary palps suggests that each plays an independent role in the perception of olfactory signals in B. depressa.  相似文献   

16.
The ultrastructure and distribution of sensilla on the antennae of the cabbage stem flea beetle, Psylliodes chrysocephala, were investigated using scanning and transmission electron microscopy techniques. Eight different sensillar types were distinguished. These were; hair plate sensilla, sensilla chaetica, three types of sensilla trichodea, sensilla basiconica, grooved peg sensilla and styloconic sensilla. The sensilla chaetica are known to be gustatory receptors. Ultrastructure indicates that the hair plate sensilla and sensilla trichodea type one are probably mechanoreceptors, whilst the sensilla styloconica are probably thermo-hygro receptors. These thermo-hygroreceptors are unusual in that they are innervated by two sensory cells (one hygroreceptor and one thermoreceptor) rather than the more usual triad. The remaining four sensillar types all have a porous hair shaft, indicating an olfactory role. One of these (the grooved peg sensillum) may also have a thermoreceptive function. No sexual dimorphism was found in the structure, number or distribution of the antennal sensilla.  相似文献   

17.
The stem borer Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is a major pest of maize, Zea mays L., and sorghum, Sorghum bicolor (L.) Moench (both Poaceae), in sub-Saharan Africa. Like in many other lepidopteran insects, the success of B. fusca in recognizing and colonizing a limited variety of plants is based on the interaction between its sensory systems and the physicochemical characteristics of its immediate environment. The sensilla on the maxillary galeae of B. fusca larvae are typical of Lepidoptera and comprise two uniporous styloconic sensilla, which are contact chemoreceptors, three basiconic sensilla, and two aporous sensilla chaetica. The maxillary palp is two-segmented and has eight small basiconic sensilla at the tip, which were also found to be gustatory. The antennae of B. fusca larvae are short and simple. The sensilla of the antenna are composed of two aporous sensilla chaetica, three multiporous cone-shaped basiconic sensilla, three small basiconic sensilla, and one aporous styloconic sensillum. The basiconic sensillum located on the third antennal segment displayed a contact chemoreception response. The other basiconic sensilla did not show any action potential activity in tip-recording tests. The significant and positive dose–response curve obtained for the antennal basiconic sensillum with sucrose indicated for the first time the presence of gustatory chemoreceptors on the antennae of a lepidopteran larva.  相似文献   

18.
Stable flies, Stomoxys calcitrans L. (Diptera: Muscidae), are economically important biting flies that have caused billions of dollars in losses in the livestock industry. Field monitoring studies have indicated that olfaction plays an important role in host location. To further our understanding of stable fly olfaction, we examined the antennal morphology of adults using scanning electron microscopy techniques. Four major types of sensillum were found and classified as: (a) basiconic sensilla; (b) trichoid sensilla with three subtypes; (c) clavate sensilla, and (d) coeloconic sensilla. No significant differences between male and female flies in abundances (total numbers) of these sensillum types were observed, except for medium-sized trichoid sensilla. The distinctive pore structures found on the surface of basiconic and clavate sensilla suggest their olfactory functions. No wall pores were found in trichoid and coeloconic sensilla, which suggests that these two types of sensillum may function as mechano-receptors. Details of the distributions of different sensillum types located on the funicle of the fly antenna were also recorded. Electroantennogram results indicated significant antennal responses to host-associated compounds. The importance of stable fly olfaction relative to host and host environment seeking is discussed. This research provides valuable new information that will enhance future developments in integrated stable fly management.  相似文献   

19.
The antennal receptors of the adult male and female ladybird beetle, Semiadalia undecimnotata (Coleoptera: Coccinellidae), were examined by scanning and transmission electron microscopy. Twelve types of receptors were characterized and grouped into 5 morphological classes: Böhm, trichoid, coeloconic, basiconic, and chetiform sensilla. Sensory function was determined on the basis of sensillar ultrastructure and electrophysiological response. Olfactory sensilla are confined in both sexes to the 2 terminal antennal segments. In contrast, gustatory and mechanosensitive organs are present along the entire length of the antennae. Sexual dimorphism of antennal receptors is limited to the latter 2 functional classes. The principal characteristics of this dimorphism are the following: a) males possess 540 sensilla (all types), while females possess only 500; b) males exhibit 2 types of taste receptors not present in females; c) females exhibit one type of mechanoreceptor absent in males; d) the 3 sex-specific types of sensilla, which occupy the same position in males and females, are confined to the inner side of the antennae. The possible role of male-specific sensilla in intersexual communication is discussed.  相似文献   

20.
The central projections of olfactory receptor cells associatedwith two distinct types of antennal sensilla in the sphinx mothManduca sexta were revealed by anterograde staining. In bothsexes, receptor axons that arise from sexually isomorphic, type-IItrichoid sensilla (and possibly some basiconic sensilla) projectto the spheroidal glomeruli in the ipsilateral antennal lobe.Each axon terminates in one glomerulus. Axons from a limitedregion of the antenna project to glomeruli throughout the lobe,arguing against strict topographic mapping of antennal receptorcells onto the array of glomeruli. Axons of sex-pheromone-selectivereceptor cells in the male-specific type-I trichoid sensillaproject exclusively to the sexually dimorphic macroglomerularcomplex (MGC). Axons from sensilla on the dorsal surface ofthe antenna are biased toward the medial MGC and those fromventral sensilla, toward the lateral MGC. Some receptor-cellaxons branch before reaching the MGC, but their terminals arealways confined to one of the two main glomerular divisionsof the MGC, the cumulus and toroid. These findings confirm thatprimary-afferent information about pheromonal and non-pheromonalodors is segregated in the antennal lobe and suggest that thereis a functional correspondence between particular olfactoryreceptor cells and specific glomeruli. Chem. Senses 20: 313–323,1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号