首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Research aimed at developing vaccines against infectious diseases generally seeks to induce robust immune responses to immunodominant antigens. This approach has led to a number of efficient bacterial and viral vaccines, but it has yet to do so for parasitic pathogens. For malaria, a disease of global importance due to infection by Plasmodium protozoa, immunization with radiation-attenuated sporozoites uniquely leads to long lasting sterile immunity against infection. The circumsporozoite protein (CSP), an important component of the sporozoite''s surface, remains the leading candidate antigen for vaccines targeting the parasite''s pre-erythrocytic stages. Difficulties in developing CSP-based vaccines that reproduce the levels of protection afforded by radiation-attenuated sporozoites have led us to question the role of CSP in the acquisition of sterile immunity. We have used a parasite transgenic for the CSP because it allowed us to test whether a major immunodominant Plasmodium antigen is indeed needed for the induction of sterile protective immunity against infection.

Methodology/Main Findings

We employed a P. berghei parasite line that expresses a heterologous CSP from P. falciparum in order to assess the role of the CSP in the protection conferred by vaccination with radiation-attenuated P. berghei parasites. Our data demonstrated that sterile immunity could be obtained despite the absence of immune responses specific to the CSP expressed by the parasite used for challenge.

Conclusions

We conclude that other pre-erythrocytic parasite antigens, possibly hitherto uncharacterised, can be targeted to induce sterile immunity against malaria. From a broader perspective, our results raise the question as to whether immunodominant parasite antigens should be the favoured targets for vaccine development.  相似文献   

2.
3.

Background

Green algae belong to a group of photosynthetic organisms that occupy diverse habitats, are closely related to land plants, and have been studied as sources of food and biofuel. Although multiple green algal genomes are available, a global comparative study of algal gene families has not been carried out. To investigate how gene families and gene expression have evolved, particularly in the context of stress response that have been shown to correlate with gene family expansion in multiple eukaryotes, we characterized the expansion patterns of gene families in nine green algal species, and examined evolution of stress response among gene duplicates in Chlamydomonas reinhardtii.

Results

Substantial variation in domain family sizes exists among green algal species. Lineage-specific expansion of families occurred throughout the green algal lineage but inferred gene losses occurred more often than gene gains, suggesting a continuous reduction of algal gene repertoire. Retained duplicates tend to be involved in stress response, similar to land plant species. However, stress responsive genes tend to be pseudogenized as well. When comparing ancestral and extant gene stress response state, we found that response gains occur in 13% of duplicate gene branches, much higher than 6% in Arabidopsis thaliana.

Conclusion

The frequent gains of stress response among green algal duplicates potentially reflect a high rate of innovation, resulting in a species-specific gene repertoire that contributed to adaptive response to stress. This could be further explored towards deciphering the mechanism of stress response, and identifying suitable green algal species for oil production.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1335-5) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism.

Methodology/Principal Findings

We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection.

Conclusion

We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection.  相似文献   

5.

Background

The Plasmodium protein Cell-traversal protein for ookinetes and sporozoites (CelTOS) plays an important role in cell traversal of host cells in both, mosquito and vertebrates, and is required for successful malaria infections. CelTOS is highly conserved among the Plasmodium species, suggesting an important functional role across all species. Therefore, targeting the immune response to this highly conserved protein and thus potentially interfering with its biological function may result in protection against infection even by heterologous species of Plasmodium.

Methodology/Principal Findings

To test this hypothesis, we developed a recombinant codon-harmonized P. falciparum CelTOS protein that can be produced to high yields in the E. coli expression system. Inbred Balb/c and outbred CD-1 mice were immunized with various doses of the recombinant protein adjuvanted with Montanide ISA 720 and characterized using in vitro and in vivo analyses.

Conclusions/Significance

Immunization with PfCelTOS resulted in potent humoral and cellular immune responses and most importantly induced sterile protection against a heterologous challenge with P. berghei sporozoites in a proportion of both inbred and outbred mice. The biological activity of CelTOS-specific antibodies against the malaria parasite is likely linked to the impairment of sporozoite motility and hepatocyte infectivity. The results underscore the potential of this antigen as a pre-erythrocytic vaccine candidate and demonstrate for the first time a malaria vaccine that is cross-protective between species.  相似文献   

6.

Background:

Mycobacterium (M.) bovis is the agent of bovine tuberculosis (TB) in a range of animal species, including humans. Recent advances in immunology and the molecular biology of Mycobacterium have allowed identification of a large number of antigens with the potential for the development of a new TB vaccine. The ESAT-6 and CFP-10 proteins of M. bovis are important structural and functional proteins known to be important immunogens.

Methods:

In the current study, the DNAs encoding these genes were utilized in the construction of pcDNA 3.1+/ESAT-6 and pcDNA3.1+/CFP-10 plasmids. After intramuscular injection of BALB/c mice with these plasmids, ESAT-6 and CFP-10 mRNA expression was assessed by RT-PCR. Mice were inoculated and boosted with the plasmids to evaluate their effects on lymphocyte proliferation.

Results:

Our results indicate the plasmids are expressed at the RNA level and can induce lymphocyte proliferation.

Conclusion:

Further study is needed to characterize the effect of these antigens on the immune system and determine whether they are effective vaccine candidates against M. bovis. Key Words: Mycobacterium bovis, DNA vaccine, ESAT-6, CFP-10, PPD, Proliferation assay, BALB/c mice  相似文献   

7.

Background

Native starch accumulates as granules containing two glucose polymers: amylose and amylopectin. Phosphate (0.2–0.5%) and proteins (0.1–0.7%) are also present in some starches. Phosphate groups play a major role in starch metabolism while granule-bound starch synthase 1 (GBSS1) which represents up to 95% of the proteins bound to the granule is responsible for amylose biosynthesis.

Methods

Synchrotron micro-X-ray fluorescence (μXRF) was used for the first time for high-resolution mapping of GBSS1 and phosphate groups based on the XRF signal of sulfur (S) and phosphorus (P), respectively. Wild-type starches were studied as well as their related mutants lacking GBSS1 or starch-phosphorylating enzyme.

Results

Wild-type potato and maize starch exhibited high level of phosphorylation and high content of sulfur respectively when compared to mutant potato starch lacking glucan water dikinase (GWD) and mutant maize starch lacking GBSS1. Phosphate groups are mostly present at the periphery of wild-type potato starch granules, and spread all over the granule in the amylose-free mutant. P and S XRF were also measured within single small starch granules from Arabidopsis or Chlamydomonas not exceeding 3–5 μm in diameter.

Conclusions

Imaging GBSS1 (by S mapping) in potato starch sections showed that the antisense technique suppresses the expression of GBSS1 during biosynthesis. P mapping confirmed that amylose is mostly present in the center of the granule, which had been suggested before.

General significance

μXRF is a potentially powerful technique to analyze the minor constituents of starch and understand starch structure/properties or biosynthesis by the use of selected genetic backgrounds.  相似文献   

8.

Background

Helminth infection and malaria remain major causes of ill-health in the tropics and subtropics. There are several shared risk factors (e.g., poverty), and hence, helminth infection and malaria overlap geographically and temporally. However, the extent and consequences of helminth-Plasmodium co-infection at different spatial scales are poorly understood.

Methodology

This study was conducted in 92 schools across Côte d’Ivoire during the dry season, from November 2011 to February 2012. School children provided blood samples for detection of Plasmodium infection, stool samples for diagnosis of soil-transmitted helminth (STH) and Schistosoma mansoni infections, and urine samples for appraisal of Schistosoma haematobium infection. A questionnaire was administered to obtain demographic, socioeconomic, and behavioral data. Multinomial regression models were utilized to determine risk factors for STH-Plasmodium and Schistosoma-Plasmodium co-infection.

Principal Findings

Complete parasitological and questionnaire data were available for 5,104 children aged 5-16 years. 26.2% of the children were infected with any helminth species, whilst the prevalence of Plasmodium infection was 63.3%. STH-Plasmodium co-infection was detected in 13.5% and Schistosoma-Plasmodium in 5.6% of the children. Multinomial regression analysis revealed that boys, children aged 10 years and above, and activities involving close contact to water were significantly and positively associated with STH-Plasmodium co-infection. Boys, wells as source of drinking water, and water contact were significantly and positively associated with Schistosoma-Plasmodium co-infection. Access to latrines, deworming, higher socioeconomic status, and living in urban settings were negatively associated with STH-Plasmodium co-infection; whilst use of deworming drugs and access to modern latrines were negatively associated with Schistosoma-Plasmodium co-infection.

Conclusions/Significance

More than 60% of the school children surveyed were infected with Plasmodium across Côte d’Ivoire, and about one out of six had a helminth-Plasmodium co-infection. Our findings provide a rationale to combine control interventions that simultaneously aim at helminthiases and malaria.  相似文献   

9.

Background

Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized.

Methodology

The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer''s patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured.

Conclusions

We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer''s patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer''s patch.  相似文献   

10.
11.
Kajla MK  Shi L  Li B  Luckhart S  Li J  Paskewitz SM 《PloS one》2011,6(5):e19649

Background

Plasmodium requires an obligatory life stage in its mosquito host. The parasites encounter a number of insults while journeying through this host and have developed mechanisms to avoid host defenses. Lysozymes are a family of important antimicrobial immune effectors produced by mosquitoes in response to microbial challenge.

Methodology/Principal Findings

A mosquito lysozyme was identified as a protective agonist for Plasmodium. Immunohistochemical analyses demonstrated that Anopheles gambiae lysozyme c-1 binds to oocysts of Plasmodium berghei and Plasmodium falciparum at 2 and 5 days after infection. Similar results were observed with Anopheles stephensi and P. falciparum, suggesting wide occurrence of this phenomenon across parasite and vector species. Lysozyme c-1 did not bind to cultured ookinetes nor did recombinant lysozyme c-1 affect ookinete viability. dsRNA-mediated silencing of LYSC-1 in Anopheles gambiae significantly reduced the intensity and the prevalence of Plasmodium berghei infection. We conclude that this host antibacterial protein directly interacts with and facilitates development of Plasmodium oocysts within the mosquito.

Conclusions/Significance

This work identifies mosquito lysozyme c-1 as a positive mediator of Plasmodium development as its reduction reduces parasite load in the mosquito host. These findings improve our understanding of parasite development and provide a novel target to interrupt parasite transmission to human hosts.  相似文献   

12.

Background

To induce potent epitope-specific T cell immunity by a peptide-based vaccine, epitope peptides must be delivered efficiently to antigen-presenting cells (APCs) in vivo. Therefore, selecting an appropriate peptide carrier is crucial for the development of an effective peptide vaccine. In this study, we explored new peptide carriers which show enhancement in cytotoxic T lymphocyte (CTL) induction capability.

Methodology/Principal Findings

Data from an epitope-specific in vivo CTL assay revealed that phosphatidylserine (PS) has a potent adjuvant effect among candidate materials tested. Further analyses showed that PS-conjugated antigens were preferentially and efficiently captured by professional APCs, in particular, by CD11c+CD11b+MHCII+ conventional dendritic cells (cDCs) compared to multilamellar liposome-conjugates or unconjugated antigens. In addition, PS demonstrated the stimulatory capacity of peptide-specific helper T cells in vivo.

Conclusions/Significance

This work indicates that PS is the easily preparable efficient carrier with a simple structure that delivers antigen to professional APCs effectively and induce both helper and cytotoxic T cell responses in vivo. Therefore, PS is a promising novel adjuvant for T cell-inducing peptide vaccines.  相似文献   

13.
Gupta L  Noh JY  Jo YH  Oh SH  Kumar S  Noh MY  Lee YS  Cha SJ  Seo SJ  Kim I  Han YS  Barillas-Mury C 《PloS one》2010,5(11):e15410

Background

Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes.

Methodology/Principal Findings

We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold.

Conclusion

There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection.  相似文献   

14.

Background

Rickettsia heilongjiangensis, the agent of Far-Eastern spotted fever (FESF), is an obligate intracellular bacterium. The surface-exposed proteins (SEPs) of rickettsiae are involved in rickettsial adherence to and invasion of host cells, intracellular bacterial growth, and/or interaction with immune cells. They are also potential molecular candidates for the development of diagnostic reagents and vaccines against rickettsiosis.

Methods

R. heilongjiangensis SEPs were identified by biotin-streptavidin affinity purification and 2D electrophoreses coupled with ESI-MS/MS. Recombinant SEPs were probed with various sera to analyze their serological characteristics using a protein microarray and an enzyme-linked immune sorbent assay (ELISA).

Results

Twenty-five SEPs were identified, most of which were predicted to reside on the surface of R. heilongjiangensis cells. Bioinformatics analysis suggests that these proteins could be involved in bacterial pathogenesis. Eleven of the 25 SEPs were recognized as major seroreactive antigens by sera from R. heilongjiangensis-infected mice and FESF patients. Among the major seroreactive SEPs, microarray assays and/or ELISAs revealed that GroEL, OmpA-2, OmpB-3, PrsA, RplY, RpsB, SurA and YbgF had modest sensitivity and specificity for recognizing R. heilongjiangensis infection and/or spotted fever.

Conclusions

Many of the SEPs identified herein have potentially important roles in R. heilongjiangensis pathogenicity. Some of them have potential as serodiagnostic antigens or as subunit vaccine antigens against the disease.  相似文献   

15.

Background

There is a strong need for a recombinant subunit vaccine against fowl cholera. We used a reverse vaccinology approach to identify putative secreted or cell surface associated P. multocida proteins that may represent potential vaccine candidate antigens.

Principal Findings

A high-throughput cloning and expression protocol was used to express and purify 71 recombinant proteins for vaccine trials. Of the 71 proteins tested, only one, PlpE in denatured insoluble form, protected chickens against fowl cholera challenge. PlpE also elicited comparable levels of protection in mice. PlpE was localized by immunofluorescence to the bacterial cell surface, consistent with its ability to elicit a protective immune response. To explore the role of PlpE during infection and immunity, a plpE mutant was generated. The plpE mutant strain retained full virulence for mice.

Conclusion

These studies show that PlpE is a surface exposed protein and was the only protein of 71 tested that was able to elicit a protective immune response. However, PlpE is not an essential virulence factor. This is the first report of a denatured recombinant protein stimulating protection against fowl cholera.  相似文献   

16.

Background

The two typhoid vaccines, the parenteral Vi capsular polysaccharide and the oral live whole-cell Salmonella Typhi Ty21a vaccine, provide similar levels of protection in field trials. Sharing no antigens, they are thought to confer protection by different mechanisms. This is the first head-to-head study to compare the humoral immune responses to these two vaccines.

Methods

50 age- and gender-matched volunteers were immunized, 25 with the Vi and 25 with the Ty21a vaccine. Circulating plasmablasts reactive with whole-cell Salmonella Typhi or one of the typhoidal antigenic structures, Vi, O-9,12, and H-d antigens, were identified as antibody-secreting cells (ASC) with ELISPOT. Homing receptor (HR) expressions were determined. These results were compared with ASC in four patients with typhoid fever. Antibodies to S. Typhi lipopolysaccharides were assessed in cultures of ALS (antibodies in lymphocyte supernatants) and in serum with ELISA.

Results

In 49 out of 50 vaccinees, no typhoid-specific plasmablasts were seen before vaccination. On day 7, response to Vi antigen was mounted in 24/25 volunteers in the Vi, and none in the Ty21a group; response to S. Typhi and O-9,12 was mounted in 49/50 vaccinees; and to H-d in 3/50. The numbers of typhoid-specific plasmablasts (total of ASC to Vi, O-9,12 and H-d antigens) proved equal in the vaccination groups. The HR expressions indicated a mainly systemic homing in the Vi and intestinal in the Ty21a group, the latter resembling that in natural infection. Plasmablasts proved more sensitive than serum and ALS in assessing the immune response.

Conclusions

The typhoid-specific humoral responses to Vi and Ty21a vaccines are similar in magnitude, but differ in expected localization and antigen-specificity. The unforeseen O antigen-specific response in the Vi group is probably due to lipopolysaccharide contaminating the vaccine preparation. Only the response to Ty21a vaccine was found to imitate that in natural infection.

Trial Registration

Current Controlled Trials Ltd. c/o BioMed Central ISRCTN68125331 http://www.controlled-trials.com/ISRCTN68125331/  相似文献   

17.

Background

Genetically modified mosquitoes have been proposed as an alternative strategy to reduce the heavy burden of malaria. In recent years, several proof-of-principle experiments have been performed that validate the idea that mosquitoes can be genetically modified to become refractory to malaria parasite development.

Results

We have created two transgenic lines of Anopheles stephensi , a natural vector of Plasmodium falciparum, which constitutively secrete a catalytically inactive phospholipase A2 (mPLA2) into the midgut lumen to interfere with Plasmodium ookinete invasion. Our experiments show that both transgenic lines expressing mPLA2 significantly impair the development of rodent malaria parasites, but only one line impairs the development of human malaria parasites. In addition, when fed on malaria-infected blood, mosquitoes from both transgenic lines are more fecund than non-transgenic mosquitoes. Consistent with these observations, cage experiments with mixed populations of transgenic and non-transgenic mosquitoes show that the percentage of transgenic mosquitoes increases when maintained on Plasmodium -infected blood.

Conclusions

Our results suggest that the expression of an anti-Plasmodium effector gene gives transgenic mosquitoes a fitness advantage when fed malaria-infected blood. These findings have important implications for future applications of transgenic mosquito technology in malaria control.  相似文献   

18.

Background

Hemozoin crystals are normally formed in vivo by Plasmodium parasites to detoxify free heme released after hemoglobin digestion during its intraerythrocytic stage. Inhibition of hemozoin formation by various drugs results in free heme concentration toxic for the parasites. As a consequence, in vitro assays have been developed to screen and select candidate antimalarial drugs based on their capacity to inhibit hemozoin formation. In this report we describe new ways to form hemozoin-like crystals that were incidentally discovered during research in the field of prion inactivation.

Methods

We investigated the use of a new assay based on naturally occurring “self-replicating” particles and previously described as presenting resistance to decontamination comparable to prions. The nature of these particles was determined using electron microscopy, Maldi-Tof analysis and X-ray diffraction. They were compared to synthetic hemozoin and to hemozoin obtained from Plasmodium falciparum. We then used the assay to evaluate the capacity of various antimalarial and anti-prion compounds to inhibit “self-replication” (crystallisation) of these particles.

Results

We identified these particles as being similar to ferriprotoporphyrin IX crystal and confirmed the ability of these particles to serve as nuclei for growth of new hemozoin-like crystals (HLC). HLC are morphologically similar to natural and synthetic hemozoin. Growth of HLC in a simple assay format confirmed inhibition by quinolines antimalarials at potencies described in the literature. Interestingly, artemisinins and tetracyclines also seemed to inhibit HLC growth.

Conclusions

The described HLC assay is simple and easy to perform and may have the potential to be used as an additional tool to screen antimalarial drugs for their hemozoin inhibiting activity. As already described by others, drugs that inhibit hemozoin crystal formation have also the potential to inhibit misfolded proteins assemblies formation.  相似文献   

19.
20.

Background

Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.

Methodology/Principal Findings

In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8+ and CD8 T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.

Conclusion/Significance

The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号