共查询到20条相似文献,搜索用时 11 毫秒
1.
Asada-Utsugi M Uemura K Noda Y Kuzuya A Maesako M Ando K Kubota M Watanabe K Takahashi M Kihara T Shimohama S Takahashi R Berezovska O Kinoshita A 《Journal of neurochemistry》2011,119(2):354-363
Sequential processing of amyloid precursor protein (APP) by β- and γ-secretase leads to the generation of amyloid-β (Aβ) peptides, which plays a central role in Alzheimer's disease pathogenesis. APP is capable of forming a homodimer through its extracellular domain as well as transmembrane GXXXG motifs. A number of reports have shown that dimerization of APP modulates Aβ production. On the other hand, we have previously reported that N-cadherin-based synaptic contact is tightly linked to Aβ production. In the present report, we investigated the effect of N-cadherin expression on APP dimerization and metabolism. Here, we demonstrate that N-cadherin expression facilitates cis-dimerization of APP. Moreover, N-cadherin expression led to increased production of Aβ as well as soluble APPβ, indicating that β-secretase-mediated cleavage of APP is enhanced. Interestingly, N-cadherin expression affected neither dimerization of C99 nor Aβ production from C99, suggesting that the effect of N-cadherin on APP metabolism is mediated through APP extracellular domain. We confirmed that N-cadherin enhances APP dimerization by a novel luciferase-complementation assay, which could be a platform for drug screening on a high-throughput basis. Taken together, our results suggest that modulation of APP dimerization state could be one of mechanisms, which links synaptic contact and Aβ production. 相似文献
2.
Iliya Lefterov Angie Bookout Zhu Wang Matthias Staufenbiel David Mangelsdorf Radosveta Koldamova 《Molecular neurodegeneration》2007,2(1):1-15
Background
Recent studies demonstrate that in addition to its modulatory effect on APP processing, in vivo application of Liver X Receptor agonist T0901317 (T0) to APP transgenic and non-transgenic mice decreases the level of Aβ42. Moreover, in young Tg2576 mice T0 completely reversed contextual memory deficits. Compared to other tissues, the regulatory functions of LXRs in brain remain largely unexplored and our knowledge so far is limited to the cholesterol transporters and apoE. In this study we applied T0 to APP23 mice for various times and examined gene and protein expression. We also performed a series of experiments with primary brain cells derived from wild type and LXR knockout mice subjected to various LXR agonist treatments and inflammatory stimuli.Results
We demonstrate an upregulation of genes related to lipid metabolism/transport, metabolism of xenobiotics and detoxification. Downregulated genes are involved in immune response and inflammation, cell death and apoptosis. Additional treatment experiments demonstrated an increase of soluble apolipoproteins E and A-I and a decrease of insoluble Aβ. In primary LXRwt but not in LXRα-/-β-/- microglia and astrocytes LXR agonists suppressed the inflammatory response induced by LPS or fibrillar Aβ.Conclusion
The results show that LXR agonists could alleviate AD pathology by acting on amyloid deposition and brain inflammation. An increased understanding of the LXR controlled regulation of Aβ aggregation and clearance systems will lead to the development of more specific and powerful agonists targeting LXR for the treatment of AD. 相似文献3.
Although Niemann-Pick C1 disease has frequently been called “juvenile Alzheimer’s”, the effects of introducing Npc1 mutations into a mouse model of Alzheimer’s have not previously been performed. We have crossed Npc1
+/− mice with APP/PS1 “Alzheimer’s” mice and studied Aβ42 accumulation and amyloid plaque formation. Mice heterozygous for Npc1 and positive for the APP and PS1 transgenes accumulated Aβ42 more rapidly than the APP/PS1 controls and this correlated,
as expected, with the area of amyloid plaques. We conclude that the alterations of intracellular cholesterol present in Npc1
+/− mice can influence the progress of Alzheimer’s disease in the APP/PS1 mouse model. 相似文献
4.
Ya Hui Hung Ashley I. Bush Robert Alan Cherny 《Journal of biological inorganic chemistry》2010,15(1):61-76
Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. The brain is particularly vulnerable to oxidative damage induced by unregulated redox-active metals such as copper and iron, and the brains of AD patients display evidence of metal dyshomeostasis and increased oxidative stress. The colocalisation of copper and amyloid β (Aβ) in the glutamatergic synapse during NMDA-receptor-mediated neurotransmission provides a microenvironment favouring the abnormal interaction of redox-potent Aβ with copper under conditions of copper dysregulation thought to prevail in the AD brain, resulting in the formation of neurotoxic soluble Aβ oligomers. Interactions between Aβ oligomers and copper can further promote the aggregation of Aβ, which is the core component of extracellular amyloid plaques, a central pathological hallmark of AD. Copper dysregulation is also implicated in the hyperphosphorylation and aggregation of tau, the main component of neurofibrillary tangles, which is also a defining pathological hallmark of AD. Therefore, tight regulation of neuronal copper homeostasis is essential to the integrity of normal brain functions. Therapeutic strategies targeting interactions between Aβ, tau and metals to restore copper and metal homeostasis are discussed. 相似文献
5.
Erwin Cabrera Paul Mathews Emiliya Mezhericher Thomas G. Beach Jingjing Deng Thomas A. Neubert Agueda Rostagno Jorge Ghiso 《生物化学与生物物理学报:疾病的分子基础》2018,1864(1):208-225
Extensive parenchymal and vascular Aβ deposits are pathological hallmarks of Alzheimer's disease (AD). Besides classic full-length peptides, biochemical analyses of brain deposits have revealed high degree of Aβ heterogeneity likely resulting from the action of multiple proteolytic enzymes. In spite of the numerous studies focusing in Aβ, the relevance of N- and C-terminal truncated species for AD pathogenesis remains largely understudied. In the present work, using novel antibodies specifically recognizing Aβ species N-terminally truncated at position 4 or C-terminally truncated at position 34, we provide a clear assessment of the differential topographic localization of these species in AD brains and transgenic models. Based on their distinct solubility, brain N- and C-terminal truncated species were extracted by differential fractionation and identified via immunoprecipitation coupled to mass spectrometry analysis. Biochemical/biophysical studies with synthetic homologues further confirmed the different solubility properties and contrasting fibrillogenic characteristics of the truncated species composing the brain Aβ peptidome. Aβ C-terminal degradation leads to the production of more soluble fragments likely to be more easily eliminated from the brain. On the contrary, N-terminal truncation at position 4 favors the formation of poorly soluble, aggregation prone peptides with high amyloidogenic propensity and the potential to exacerbate the fibrillar deposits, self-perpetuating the amyloidogenic loop. Detailed assessment of the molecular diversity of Aβ species composing interstitial fluid and amyloid deposits at different disease stages, as well as the evaluation of the truncation profile during various pharmacologic approaches will provide a comprehensive understanding of the still undefined contribution of Aβ truncations to the disease pathogenesis and their potential as novel therapeutic targets. 相似文献
6.
J Wang K Ohno-Matsui I Morita 《Biochemical and biophysical research communications》2012,420(4):704-709
Cancer patients frequently develop autoantibodies. To test the hypothesis that the appearance of autoantibodies precedes the clinical diagnosis of cancer, we applied an immunoproteomic approach to compare autoantibody profiles before and after appearance of malignances. Proteins from A549 cells, a lung adenocarcinoma cell line, were separated by two dimensional electrophoresis and then immunoblotted with serum samples from 8 individuals who were eventually diagnosed with lung cancer. Compared with autoantibody profiles from 3 years prior to the appearance of malignances, 21 immunoreactive spots newly appeared or presented with stronger staining intensity when clinical diagnoses were made. Among them, 10 matched spots on 2-DE gels were identified by mass spectrometry analysis as 5 proteins. With immunoprecipitation analysis, the antigenicity of protein cathepsin D was confirmed, and notably, in lung cancer sera, the occurrences of autoantibodies against the specific forms of cathepsin D differed significantly from the control groups (p<0.05). Our findings suggest that harnessing immunity may have utility for early cancer marker discovery, and that comparing autoantibodies to specific forms of cathepsin D may be a promising early marker of lung cancer. 相似文献
7.
Upadhaya AR Lungrin I Yamaguchi H Fändrich M Thal DR 《Journal of cellular and molecular medicine》2012,16(2):287-295
Alzheimer's disease (AD) is characterized by the aggregation and deposition of amyloid β protein (Aβ) in the brain. Soluble Aβ oligomers are thought to be toxic. To investigate the predominant species of Aβ protein that may play a role in AD pathogenesis, we performed biochemical analysis of AD and control brains. Sucrose buffer-soluble brain lysates were characterized in native form using blue native (BN)-PAGE and also in denatured form using SDS-PAGE followed by Western blot analysis. BN-PAGE analysis revealed a high-molecular weight smear (>1000 kD) of Aβ(42) -positive material in the AD brain, whereas low-molecular weight and monomeric Aβ species were not detected. SDS-PAGE analysis, on the other hand, allowed the detection of prominent Aβ monomer and dimer bands in AD cases but not in controls. Immunoelectron microscopy of immunoprecipitated oligomers and protofibrils/fibrils showed spherical and protofibrillar Aβ-positive material, thereby confirming the presence of high-molecular weight Aβ (hiMWAβ) aggregates in the AD brain. In vitro analysis of synthetic Aβ(40) - and Aβ(42) preparations revealed Aβ fibrils, protofibrils, and hiMWAβ oligomers that were detectable at the electron microscopic level and after BN-PAGE. Further, BN-PAGE analysis exhibited a monomer band and less prominent low-molecular weight Aβ (loMWAβ) oligomers. In contrast, SDS-PAGE showed large amounts of loMWAβ but no hiMWAβ(40) and strikingly reduced levels of hiMWAβ(42) . These results indicate that hiMWAβ aggregates, particularly Aβ(42) species, are most prevalent in the soluble fraction of the AD brain. Thus, soluble hiMWAβ aggregates may play an important role in the pathogenesis of AD either independently or as a reservoir for release of loMWAβ oligomers. 相似文献
8.
The subventricular zone(SVZ),lining the lateral ventricle in forebrain,retains a population of neuronal precursors with the ability of proliferation in adult mammals.To test the potential of neuronal precursors in adult mice,we transplanted adult SVZ cells labeled with fluorescent dye PKH26 into the lateral ventricle of the mouse brain in different development stages.The preliminary results indicated that the grafted cells were able to survive and migrate into multiople regions of the recipient brain,including SVZ, the third ventricle,thalamus,superior colliculus,inferior colliculus,cerebellum and olfactory bulb etc;and the amount of survival cells in different brain regions was correlated with the development stage of the recipient brain.Immunohistochemical studies showed that most of the grafted cells migrating into the specific target could express neuronal or astrocytic marker.Our results revealed that the neuronal precursors in adult SVZ still retained immortality and ability of proliferation,which is likely to be induced by some environmental factors. 相似文献
9.
Cao Y Gao X Zhang W Zhang G Nguyen AK Liu X Jimenez F Cox CS Townsend CM Ko TC 《American journal of physiology. Gastrointestinal and liver physiology》2011,301(1):G156-G164
Dietary fiber intake links to decreased risk of colorectal cancers. The underlying mechanisms remain unclear. Recently, we found that butyrate, a short-chain fatty acid produced in gut by bacterial fermentation of dietary fiber, enhances TGF-β signaling in rat intestinal epithelial cells (RIE-1). Furthermore, TGF-β represses inhibitors of differentiation (Ids), leading to apoptosis. We hypothesized that dietary fiber enhances TGF-β's growth inhibitory effects on gut epithelium via inhibition of Id2. In this study, Balb/c and DBA/2N mice were fed with a regular rodent chow or supplemented with a dietary fiber (20% pectin) and Smad3 level in gut epithelium was measured. In vitro, RIE-1 cells were treated with butyrate and TGF-β(1), and cell functions were evaluated. Furthermore, the role of Ids in butyrate- and TGF-β-induced growth inhibition was investigated. We found that pectin feeding increased Smad3 protein levels in the jejunum (1.47 ± 0.26-fold, P = 0.045, in Balb/c mice; 1.49 ± 0.19-fold, P = 0.016, in DBA/2N mice), and phospho-Smad3 levels (1.92 ± 0.27-fold, P = 0.009, in Balb/c mice; 1.83 ± 0.28-fold, P = 0.022, in DBA/2N mice). Butyrate or TGF-β alone inhibited cell growth and induced cell cycle arrest. The combined treatment of butyrate and TGF-β synergistically induced cell cycle arrest and apoptosis in RIE-1 cells and repressed Id2 and Id3 levels. Furthermore, knockdown of Id2 gene expression by use of small interfering RNA caused cell cycle arrest and apoptosis. We conclude that dietary fiber pectin enhanced Smad3 expression and activation in the gut. Butyrate and TGF-β induced cell cycle arrest and apoptosis, which may be mediated by repression of Id2. Our results implicate a novel mechanism of dietary fiber in reducing the risk of colorectal cancer development. 相似文献
10.
Feda E. Ali Frances Separovic Colin J. Barrow Shenggen Yao Kevin J. Barnham 《International journal of peptide research and therapeutics》2006,12(2):153-164
The accumulation of senile plaques composed primarily of aggregated amyloid β-peptide (Aβ), is the major characteristic of Alzheimer’s disease. Many studies correlate plaque accumulation and the presence of metal ions, particularly copper and zinc. The metal binding sites of the amyloid Aβ peptide of Alzheimer’s disease are located in the N-terminal region of the full-length peptide. In this work, the interactions with metals of a model peptide comprising the first 16 amino acid residues of the amyloid Aβ peptide, Aβ(1–16), were studied. The effect of Cu2+ and Zn2+ binding to Aβ(1–16) on peptide structure and oligomerisation are reported. The results of ESI-MS, gel filtration chromatography and NMR spectroscopy demonstrated formation of oligomeric complexes of the peptide in the presence of the metal ions and revealed the stoichiometry of Cu2+ and Zn2+ binding to Aβ(1–16), with Cu2+ showing a higher affinity for binding the peptide than Zn2+. 相似文献
11.
Zhiqiang?Xu Na?Xiao Yali?Chen Huang?Huang Charles?Marshall Junying?Gao Zhiyou?Cai Ting?Wu Gang?Hu Ming?Xiao
Background
Preventing or reducing amyloid-beta (Aβ) accumulation in the brain is an important therapeutic strategy for Alzheimer’s disease (AD). Recent studies showed that the water channel aquaporin-4 (AQP4) mediates soluble Aβ clearance from the brain parenchyma along the paravascular pathway. However the direct evidence for roles of AQP4 in the pathophysiology of AD remains absent.Results
Here, we reported that the deletion of AQP4 exacerbated cognitive deficits of 12-moth old APP/PS1 mice, with increases in Aβ accumulation, cerebral amyloid angiopathy and loss of synaptic protein and brain-derived neurotrophic factor in the hippocampus and cortex. Furthermore, AQP4 deficiency increased atrophy of astrocytes with significant decreases in interleukin-1 beta and nonsignficant decreases in interleukin-6 and tumor necrosis factor-alpha in hippocampal and cerebral samples.Conclusions
These results suggest that AQP4 attenuates Aβ pathogenesis despite its potentially inflammatory side-effects, thus serving as a promising target for treating AD.12.
Shi-gao Yang Shao-wei Wang Min Zhao Ran Zhang Wei-wei Zhou Ya-nan Li Ya-jing Su He Zhang Xiao-lin Yu Rui-tian Liu 《PloS one》2012,7(11)
Amyloid precursor protein cleaving enzyme 1 (BACE1), an aspartyl protease, initiates processing of the amyloid precursor protein (APP) into β-amyloid (Aβ); the peptide likely contributes to development of Alzheimer’s disease (AD). BACE1 is an attractive therapeutic target for AD treatment, but it exhibits other physiological activities and has many other substrates besides APP. Thus, inhibition of BACE1 function may cause adverse side effects. Here, we present a peptide, S1, isolated from a peptide library that selectively inhibits BACE1 hydrolytic activity by binding to the β-proteolytic site on APP and Aβ N-terminal. The S1 peptide significantly reduced Aβ levels in vitro and in vivo and inhibited Aβ cytotoxicity in SH-SY5Y cells. When applied to APPswe/PS1dE9 double transgenic mice by intracerebroventricular injection, S1 significantly improved the spatial memory as determined by the Morris Water Maze, and also attenuated their Aβ burden. These results indicate that the dual-functional peptide S1 may have therapeutic potential for AD by both reducing Aβ generation and inhibiting Aβ cytotoxicity. 相似文献
13.
Annular protofibrils (APFs) represent a new and distinct class of amyloid structures formed by disease-associated proteins. In vitro, these pore-like structures have been implicated in membrane permeabilization and ion homeostasis via pore formation. Still, evidence for their formation and relevance in vivo is lacking. Herein, we report that APFs are in a distinct pathway from fibril formation in vitro and in vivo. In human Alzheimer disease brain samples, amyloid-β APFs were associated with diffuse plaques, but not compact plaques; moreover, we show the formation of intracellular APFs. Our results together with previous studies suggest that the prevention of amyloid-β annular protofibril formation could be a relevant target for the prevention of amyloid-β toxicity in Alzheimer disease. 相似文献
14.
Andrzej Szutowicz Hanna Bielarczyk Marlena Zyśk Aleksandra Dyś Anna Ronowska Sylwia Gul-Hinc Joanna Klimaszewska-Łata 《Neurochemical research》2017,42(3):891-904
There are several systemic and intracerebral pathologic conditions, which limit provision and utilization of energy precursor metabolites in neuronal cells. Energy deficits cause excessive depolarization of neuronal cells triggering glutamate-zinc evoked excitotoxic cascade. The intracellular zinc excess hits several intraneuronal targets yielding collapse of energy balance and impairment functional and structural impairments cholinergic neurons. Disturbances in metabolism of acetyl-CoA, which is a direct precursor for energy, acetylcholine, N-acetyl-l-aspartate and acetylated proteins synthesis, play an important role in these pathomechanisms. Disruption of brain homeostasis activates slow accumulation of amyloid-β 1?42 , which extra and intracellular oligomeric deposits disrupt diverse transporting and signaling processes in all membrane structures of the cell. Both neurotoxic signals may combine aggravating detrimental effects on neuronal cell. Different neuroglial and neuronal cell types may display differential susceptibility to similar pathogenic insults depending on specific features of their energy and functional parameters. This review, basing on findings gained from cellular and animal models of Alzheimer’s disease, discusses putative energy/acetyl-CoA dependent mechanism in early and late stages of neurodegeneration. 相似文献
15.
Previous evidence suggested that extra-virgin olive oil (EVOO) is linked to attenuating amyloid-β (Aβ) pathology and improving cognitive function in Alzheimer’s disease (AD) mouse models. In addition, we recently reported the beneficial effect of oleocanthal, a phenolic compound in EVOO, against AD pathology. Currently, medications available to target AD pathology are limited. Donepezil is an acetylcholine esterase inhibitor approved for use for all AD stages. Donepezil has been reported to have limited Aβ-targeting mechanisms beside its acetylcholine esterase inhibition. The aim of this study was to investigate the consumption of EVOO rich with oleocanthal (hereafter EVOO) as a medical food on enhancing the effect of donepezil on attenuating Aβ load and related toxicity in 5xFAD mouse model of AD. Our results showed that EVOO consumption in combination with donepezil significantly reduced Aβ load and related pathological changes. Reduced Aβ load could be explained, at least in part, by enhancing Aβ clearance pathways including blood–brain barrier (BBB) clearance and enzymatic degradation, and shifting amyloid precursor protein processing toward the nonamyloidogenic pathway. Furthermore, EVOO combination with donepezil up-regulated synaptic proteins, enhanced BBB tightness and reduced neuroinflammation associated with Aβ pathology. In conclusion, EVOO consumption as a medical food combined with donepezil offers an effective therapeutic approach by enhancing the noncholinergic mechanisms of donepezil and by providing additional mechanisms to attenuate Aβ-related pathology in AD patients. 相似文献
16.
The presence of trace concentrations of metallic ions, such as copper and zinc, has previously been shown to drastically increase the aggregation rate and neurotoxicity of amyloid-β (Aβ), the peptide implicated in Alzheimer’s disease (AD). The mechanism of why copper and zinc accelerate Aβ aggregation is poorly understood. In this work, we use single molecule force spectroscopy (SMFS) to probe the kinetic and thermodynamic parameters (dissociation constant, Kd, kinetic dissociation rate, koff, and free energy, ΔG) of the dissociation of an Aβ dimer, the amyloid species which initiates the amyloid cascade. Our results show that nanomolar concentrations of copper do not change the single molecule affinity of Aβ to another Aβ peptide in a statistically significant way, while nanomolar concentrations of zinc decrease the affinity of Aβ-Aβ by an order of magnitude. This suggests that the binding of zinc ion to Aβ may interfere with the binding of Aβ-Aβ, leading to a lower self-affinity. 相似文献
17.
18.
Sergiy I Borysov Antoneta Granic Jaya Padmanabhan Claire E Walczak Huntington Potter 《Cell cycle (Georgetown, Tex.)》2011,10(9):1397-1410
Chromosome mis-segregation and aneuploidy are greatly induced in Alzheimer disease and models thereof by mutant forms of the APP and PS proteins and by their product, the Aβ peptide. Here we employ human somatic cells and Xenopus egg extracts to show that Aβ impairs the assembly and maintenance of the mitotic spindle. Mechanistically, these defects result from Aβ''s inhibition of mitotic motor kinesins, including Eg5, KIF4A and MCAK. In vitro studies show that oligomeric Aβ directly inhibits recombinant MCAK by a noncompetitive mechanism. In contrast, inhibition of Eg5 and KIF4A is competitive with respect to both ATP and microtubules, indicating that Aβ interferes with their interactions with the microtubules of the mitotic spindle. Consistently, increased levels of polymerized microtubules or of the microtubule stabilizing protein Tau significantly decrease the inhibitory effect of Aβ on Eg5 and KIF4A. Together, these results indicate that by disrupting the interaction between specific kinesins and microtubules and by exerting a direct inhibitory effect on the motor activity, excess Aβ deregulates the mechanical forces that govern the spindle and thereby leads to the generation of defective mitotic structures. The resulting defect in neurogenesis can account for the over 30% aneuploid/hyperploid, degeneration-prone neurons observed in Alzheimer disease brain. The finding of mitotic motors including Eg5 in mature post-mitotic neurons implies that their inhibition by Aβ may also disrupt neuronal function and plasticity.Key words: aneuploidy, Alzheimer disease, Eg5, KIF4A, MCAK, amyloid 相似文献
19.
20.
《Cell cycle (Georgetown, Tex.)》2013,12(9):1397-1410
Chromosome mis-segregation and aneuploidy are greatly induced in Alzheimer’s disease and models thereof by mutant forms of the APP and PS proteins and by their product, the Ab peptide. Here we employ human somatic cells and Xenopus egg extracts to show that Aβ impairs the assembly and maintenance of the mitotic spindle. Mechanistically, these defects result from Aβ’s inhibition of mitotic motor kinesins, including Eg5, KIF4A and MCAK. In vitro studies show that oligomeric Aβ directly inhibits recombinant MCAK by a noncompetitive mechanism. In contrast, inhibition of Eg5 and KIF4A is competitive with respect to both ATP and microtubules, indicating that Aβ interferes with their interactions with the microtubules of the mitotic spindle. Consistently, increased levels of polymerized microtubules or of the microtubule stabilizing protein Tau significantly decrease the inhibitory effect of Aβ on Eg5 and KIF4A. Together, these results indicate that by disrupting the interaction between specific kinesins and microtubules and by exerting a direct inhibitory effect on the motor activity, excess Ab deregulates the mechanical forces that govern the spindle and thereby leads to the generation of defective mitotic structures. The resulting defect in neurogenesis can account for the over 30% aneuploid/hyperploid, degeneration-prone neurons observed in Alzheimer disease brain. The finding of mitotic motors including Eg5 in mature post-mitotic neurons implies that their inhibition by Ab may also disrupt neuronal function and plasticity. 相似文献