首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aquatic pathogen, Streptococcus iniae, is responsible for over 100 million dollars in annual losses for the aquaculture industry and is capable of causing systemic disease in both fish and humans. A better understanding of S. iniae disease pathogenesis requires an appropriate model system. The genetic tractability and the optical transparency of the early developmental stages of zebrafish allow for the generation and non-invasive imaging of transgenic lines with fluorescently tagged immune cells. The adaptive immune system is not fully functional until several weeks post fertilization, but zebrafish larvae have a conserved vertebrate innate immune system with both neutrophils and macrophages. Thus, the generation of a larval infection model allows the study of the specific contribution of innate immunity in controlling S. iniae infection.The site of microinjection will determine whether an infection is systemic or initially localized. Here, we present our protocols for otic vesicle injection of zebrafish aged 2-3 days post fertilization as well as our techniques for fluorescent confocal imaging of infection. A localized infection site allows observation of initial microbe invasion, recruitment of host cells and dissemination of infection. Our findings using the zebrafish larval model of S. iniae infection indicate that zebrafish can be used to examine the differing contributions of host neutrophils and macrophages in localized bacterial infections. In addition, we describe how photolabeling of immune cells can be used to track individual host cell fate during the course of infection.  相似文献   

2.
The pulmonary innate immune system is heavily implicated in the perpetual airway inflammation and impaired host defense characterizing Chronic Obstructive Pulmonary Disease (COPD). The airways of patients suffering from COPD are infiltrated by various immune and inflammatory cells including macrophages, neutrophils, T lymphocytes, and dendritic cells. While the role of macrophages, neutrophils and T lymphocytes is well characterized, the contribution of dendritic cells to COPD pathogenesis is still the subject of emerging research. A paper by Botelho and colleagues in the current issue of Respiratory Research investigates the importance of dendritic cell recruitment in cigarette-smoke induced acute and chronic inflammation in mice. Dendritic cells of the healthy lung parenchyma and airways perform an important sentinel function and regulate immune homeostasis. During inflammatory responses the function and migration pattern of these cells is dramatically altered but the underlying mechanisms are incompletely understood. Botelho and colleagues demonstrate here the importance of IL-1R1/IL-1α related mechanisms including CCL20 production in cigarette-smoke induced recruitment of dendritic cells and T cell activation in the mouse lung.  相似文献   

3.
The inflammatory response is one of the most dramatic examples of directed cell movement in nature. Inflammation is triggered at the site of injury and results in the migration of immune cells to the site to protect the host from infection. We have devised an in vivo inflammation assay using translucent zebrafish embryos, which allow live imaging and pharmacological manipulation of macrophage chemotaxis to wounds inflicted with a laser. Using this assay, we test the role of the microtubule cytoskeleton in macrophage chemotaxis in vivo using nocodazole to disrupt microtubule polymerization. We find that de-stabilisation of microtubules with nocodazole impairs macrophage recruitment to wounds, but that addition of the Rho kinase inhibitor Y-27632 suppresses these effects and restores the recruitment of macrophages to wounds. Taken together, these results suggest that destabilizing microtubules activates Rho kinase and that this increase in Rho kinase activity interferes with leukocyte recruitment in vivo.  相似文献   

4.
Inflammation is a complicated biological process in response to harmful stimuli, which involves the cooperation of immune system and vascular system. Upon pathogen invasion or tissue injury, resident innate immune cells such as macrophages and dendritic cells are activated and release inflammatory mediators, which result in the vasodilation and recruitment of leukocytes, mainly monocytes and neutrophils. As two of the most important inflammation-mediating immune cells, macrophages and neutrophils have long been regarded to have a pro-inflammatory effect. However, increasing evidences suggest the role of macrophage and neutrophil in inflammation is more complicated and diversified than we thought. Differently activated macrophages and neutrophils lead to diverse even opposite activities. Precise understanding of the role of different subpopulations is critical to achieve the effective treatment for inflammatory diseases. In this review, we discuss the two potentially distinct activation routes of macrophages and neutrophils in obesity and diabetes.  相似文献   

5.
Tuberculosis (TB) is caused by the intracellular bacteria Mycobacterium tuberculosis, and kills more than 1.5 million people every year worldwide. Immunity to TB is associated with the accumulation of IFNγ-producing T helper cell type 1 (Th1) in the lungs, activation of M.tuberculosis-infected macrophages and control of bacterial growth. However, very little is known regarding the early immune responses that mediate accumulation of activated Th1 cells in the M.tuberculosis-infected lungs. To define the induction of early immune mediators in the M.tuberculosis-infected lung, we performed mRNA profiling studies and characterized immune cells in M.tuberculosis-infected lungs at early stages of infection in the mouse model. Our data show that induction of mRNAs involved in the recognition of pathogens, expression of inflammatory cytokines, activation of APCs and generation of Th1 responses occurs between day 15 and day 21 post infection. The induction of these mRNAs coincides with cellular accumulation of Th1 cells and activation of myeloid cells in M.tuberculosis-infected lungs. Strikingly, we show the induction of mRNAs associated with Gr1+ cells, namely neutrophils and inflammatory monocytes, takes place on day 12 and coincides with cellular accumulation of Gr1+ cells in M.tuberculosis-infected lungs. Interestingly, in vivo depletion of Gr1+ neutrophils between days 10-15 results in decreased accumulation of Th1 cells on day 21 in M.tuberculosis-infected lungs without impacting overall protective outcomes. These data suggest that the recruitment of Gr1+ neutrophils is an early event that leads to production of chemokines that regulate the accumulation of Th1 cells in the M.tuberculosis-infected lungs.  相似文献   

6.
Eosinophils play important roles in regulation of cellular responses under conditions of homeostasis or infection. Intestinal infection with the parasitic nematode, Trichinella spiralis, induces a pronounced eosinophilia that coincides with establishment of larval stages in skeletal muscle. We have shown previously that in mouse strains in which the eosinophil lineage is ablated, large numbers of T. spiralis larvae are killed by NO, implicating the eosinophil as an immune regulator. In this report, we show that parasite death in eosinophil-ablated mice correlates with reduced recruitment of IL-4(+) T cells and enhanced recruitment of inducible NO synthase (iNOS)-producing neutrophils to infected muscle, as well as increased iNOS in local F4/80(+)CD11b(+)Ly6C(+) macrophages. Actively growing T. spiralis larvae were susceptible to killing by NO in vitro, whereas mature larvae were highly resistant. Growth of larvae was impaired in eosinophil-ablated mice, potentially extending the period of susceptibility to the effects of NO and enhancing parasite clearance. Transfer of eosinophils into eosinophil-ablated ΔdblGATA mice restored larval growth and survival. Regulation of immunity was not dependent upon eosinophil peroxidase or major basic protein 1 and did not correlate with activity of the IDO pathway. Our results suggest that eosinophils support parasite growth and survival by promoting accumulation of Th2 cells and preventing induction of iNOS in macrophages and neutrophils. These findings begin to define the cellular interactions that occur at an extraintestinal site of nematode infection in which the eosinophil functions as a pivotal regulator of immunity.  相似文献   

7.
Rapid activation of the innate immune system is critical for an efficient host response to invading pathogens. However, the inflammatory reaction has to be strictly controlled to minimize harmful immunopathology. A number of mediators including the cytokine interleukin-27 (IL-27) appear to be responsible for limitation and resolution of inflammation. Despite increasing knowledge of its suppressive effects on T cells, the influence on neutrophils and macrophages is poorly understood. To determine the role of IL-27 in innate immune responses we analysed the effect of IL-27 in a T cell independent model of zymosan-induced peritonitis. Early administration of recombinant IL-27 strongly reduced the number of neutrophils recruited to the peritoneal cavity after zymosan application as well as the neutrophil frequency in the blood. Simultaneously, IL-27 reduced the release of neutrophils from the bone marrow upon inflammation. Although cytokine levels were not affected by IL-27 treatment, the levels of the chemokines KC, MCP-1 and MIP-1α in the peritoneal fluid were strongly decreased. These findings demonstrate that IL-27 is able to control mobilisation and recruitment of neutrophils into the peritoneal cavity and identify a novel mechanism to limit inflammation caused by innate immune cells.  相似文献   

8.
Albino rat macrophages and neutrophils in the presence of immune serum adhered to and promoted killing of Brugia malayi infective larvae in vitro. At a similar cell-target ratio, macrophages were more potent than neutrophils in inducing cytotoxic response to the larvae. Eosinophils were also effective in killing but only at a high cell-target ratio. The activity in the immune serum could be absorbed to and eluted from a Protein A-Sepharose column suggesting involvement of IgG antibody in the reaction. An indirect fluorescent antibody test confirmed the presence of IgG on the surface of larvae incubated in immune serum. Infective larvae were attacked by host cells within micropore chambers 16-24 h after implantation into immunized rats. Further, a strong cytotoxic response to the larvae was seen when they were introduced intraperitoneally into immune rats indicating the role of antibody and cells in vivo. We suggest that antibody-dependent cellular cytotoxicity may represent an important mechanism of parasite killing in an immune host.  相似文献   

9.
Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds.  相似文献   

10.
Pneumococcal pneumonia is a leading cause of death and a major source of human morbidity. The initial immune response plays a central role in determining the course and outcome of pneumococcal disease. We combine bacterial titer measurements from mice infected with Streptococcus pneumoniae with mathematical modeling to investigate the coordination of immune responses and the effects of initial inoculum on outcome. To evaluate the contributions of individual components, we systematically build a mathematical model from three subsystems that describe the succession of defensive cells in the lung: resident alveolar macrophages, neutrophils and monocyte-derived macrophages. The alveolar macrophage response, which can be modeled by a single differential equation, can by itself rapidly clear small initial numbers of pneumococci. Extending the model to include the neutrophil response required additional equations for recruitment cytokines and host cell status and damage. With these dynamics, two outcomes can be predicted: bacterial clearance or sustained bacterial growth. Finally, a model including monocyte-derived macrophage recruitment by neutrophils suggests that sustained bacterial growth is possible even in their presence. Our model quantifies the contributions of cytotoxicity and immune-mediated damage in pneumococcal pathogenesis.  相似文献   

11.
The inflammasome is an innate immune complex whose rapid inflammatory outputs play a critical role in controlling infection; however, the host cells that mediate inflammasome responses in vivo are not well defined. Using zebrafish larvae, we examined the cellular immune responses to inflammasome activation during infection. We compared the host responses with two Listeria monocytogenes strains: wild type and Lm‐pyro, a strain engineered to activate the inflammasome via ectopic expression of flagellin. Infection with Lm‐pyro led to activation of the inflammasome, macrophage pyroptosis and ultimately attenuation of virulence. Depletion of caspase A, the zebrafish caspase‐1 homolog, restored Lm‐pyro virulence. Inflammasome activation specifically recruited macrophages to infection sites, whereas neutrophils were equally recruited to wild type and Lm‐pyro infections. Similar to caspase A depletion, macrophage deficiency rescued Lm‐pyro virulence to wild‐type levels, while defective neutrophils had no specific effect. Neutrophils were, however, important for general clearance of L. monocytogenes, as both wild type and Lm‐pyro were more virulent in larvae with defective neutrophils. This study characterizes a novel model for inflammasome studies in an intact host, establishes the importance of macrophages during inflammasome responses and adds importance to the role of neutrophils in controlling L. monocytogenes infections.  相似文献   

12.
Airborne pathogens encounter several hurdles during host invasion, including alveolar macrophages (AMs) and airway epithelial cells (AECs) and their products. Although growing evidence indicates pathogen-sensing capacities of epithelial cells, the relative contribution of hematopoietic versus nonhematopoietic cells in the induction of an inflammatory response and their possible interplay is still poorly defined in vivo in the context of infections with pathogenic microorganisms. In this study, we show that nonhematopoietic cells, including AECs, are critical players in the inflammatory process induced upon airway infection with Legionella pneumophila, and that they are essential for control of bacterial infections. Lung parenchymal cells, including AECs, are not infected themselves by L. pneumophila in vivo but rather act as sensors and amplifiers of inflammatory cues delivered by L. pneumophila-infected AM. We identified AM-derived IL-1β as the critical mediator to induce chemokine production in nonhematopoietic cells in the lung, resulting in swift and robust recruitment of infection-controlling neutrophils into the airways. These data add a new level of complexity to the coordination of the innate immune response to L. pneumophila and illustrate how the cross talk between leukocytes and nonhematopoietic cells contributes to efficient host protection.  相似文献   

13.
Epidemiology studies and clinical trials have suggested that the use of non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, can significantly reduce the incidence of and mortality associated with many cancers, and upregulation of the COX2-PGE(2) pathway in tumor microenvironments might drive several aspects of cancer progression. For these reasons, the mechanisms linking COX blockade and cancer prevention have long been an area of active investigation. During carcinogenesis, COX-2 is expressed both by malignant epithelial cells and by tumor-associated stromal cells, including macrophages, but the observation that NSAIDs are most effective in cancer prevention in APC(min/+) mice if the mice are treated from conception suggests that the COX-2/PGE(2) pathway might also be critical at the earliest stages of tumor development. In this study we take advantage of the translucency and genetic tractability of zebrafish larvae to investigate the involvement of inflammatory cells at cancer initiation, when transformed cells first arise in tissues. We previously showed that innate immune cells supply early transformed cells with proliferative cues and, by using complementary pharmacological and genetic experiments, we now show that prostaglandin E(2) (PGE(2)) is the trophic signal required for this expansion of transformed cells. Our in vivo observations at these early stages of cancer initiation provide a potential mechanistic explanation for why long-term use of low doses of NSAIDs, including aspirin, might reduce cancer onset.  相似文献   

14.
Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils) during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation.KEY WORDS: Zebrafish, Neutrophils, Inflammation, Interleukin-1β  相似文献   

15.
Listeria monocytogenes is a facultative intracellular bacterium that causes systemic infections in immunocompromised hosts. Early recruitment of myeloid cells, including inflammatory monocytes and neutrophils, to sites of L. monocytogenes infection is essential for the control of infection and host survival. Because previous experimental studies used depleting or blocking Abs that affected both inflammatory monocytes and neutrophils, the relative contributions of these cell populations to defense against L. monocytogenes infection remain incompletely defined. In this article, we used highly selective depletion strategies to either deplete inflammatory monocytes or neutrophils from L. monocytogenes-infected mice and demonstrate that neutrophils are dispensable for early and late control of infection. In contrast, inflammatory monocytes are essential for bacterial clearance during the innate and adaptive phases of the immune response to L. monocytogenes infection.  相似文献   

16.
Inflammation occurs as a result of exposure of tissues and organs to harmful stimuli such as microbial pathogens, irritants, or toxic cellular components. The primary physical manifestations of inflammation are redness, swelling, heat, pain, and loss of function to the affected area. These processes involve the major cells of the immune system, including monocytes, macrophages, neutrophils, basophils, dendritic cells, mast cells, T-cells, and B-cells. However, examination of a range of inflammatory lesions demonstrates the presence of specific leukocytes in any given lesion. That is, the inflammatory process is regulated in such a way as to ensure that the appropriate leukocytes are recruited. These events are in turn controlled by a host of extracellular molecular regulators, including members of the cytokine and chemokine families that mediate both immune cell recruitment and complex intracellular signalling control mechanisms that characterise inflammation. This review will focus on the role of the main cytokines, chemokines, and their receptors in the pathophysiology of auto-inflammatory disorders, pro-inflammatory disorders, and neurological disorders involving inflammation.  相似文献   

17.
Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and in vivo. Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis. Macrophages also positively influence wound angiogenesis by driving resolution of anti‐angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor‐α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance.  相似文献   

18.
Aspergillus fumigatus is an important human fungal pathogen and its conidia are constantly inhaled by humans. In immunocompromised individuals, conidia can grow out as hyphae that damage lung epithelium. The resulting invasive aspergillosis is associated with devastating mortality rates. Since infection is a race between the innate immune system and the outgrowth of A. fumigatus conidia, we use dynamic optimization to obtain insight into the recruitment and depletion of alveolar macrophages and neutrophils. Using this model, we obtain key insights into major determinants of infection outcome on host and pathogen side. On the pathogen side, we predict in silico and confirm in vitro that germination speed is an important virulence trait of fungal pathogens due to the vulnerability of conidia against host defense. On the host side, we found that epithelial cells, which have been underappreciated, play a role in fungal clearance and are potent mediators of cytokine release. Both predictions were confirmed by in vitro experiments on established cell lines as well as primary lung cells. Further, our model affirms the importance of neutrophils in invasive aspergillosis and underlines that the role of macrophages remains elusive. We expect that our model will contribute to improvement of treatment protocols by focusing on the critical components of immune response to fungi but also fungal virulence traits.  相似文献   

19.
The immune system has evolved to protect the host from invading pathogens and to maintain tissue homeostasis. Although the inflammatory process involving pathogens is well documented, the intrinsic compounds that initiate sterile inflammation and how its progression is mediated are still not clear. Because tissue injury is usually associated with ischemia and the accompanied hypoxia, the microenvironment of various pathologies involves anaerobic metabolites and products of necrotic cells. In the current study, we assessed in a comparative manner the role of IL-1α and IL-1β in the initiation and propagation of sterile inflammation induced by products of hypoxic cells. We found that following hypoxia, the precursor form of IL-1α, and not IL-1β, is upregulated and subsequently released from dying cells. Using an inflammation-monitoring system consisting of Matrigel mixed with supernatants of hypoxic cells, we noted accumulation of IL-1α in the initial phase, which correlated with the infiltration of neutrophils, and the expression of IL-1β correlated with later migration of macrophages. In addition, we were able to show that IL-1 molecules from cells transfected with either precursor IL-1α or mature IL-1β can recruit neutrophils or macrophages, respectively. Taken together, these data suggest that IL-1α, released from dying cells, initiates sterile inflammation by inducing recruitment of neutrophils, whereas IL-1β promotes the recruitment and retention of macrophages. Overall, our data provide new insight into the biology of IL-1 molecules as well as on the regulation of sterile inflammation.  相似文献   

20.
Damage to neonatal and adult tissues always incites an influx of inflammatory neutrophils and macrophages. Besides clearing the wound of invading microbes, these cells are believed to be crucial coordinators of the repair process, acting both as professional phagocytes to clear wound debris and as a major source of wound growth factor signals. Here we report wound healing studies in the PU.1 null mouse, which is genetically incapable of raising the standard inflammatory response because it lacks macrophages and functioning neutrophils. Contrary to dogma, we show that these "macrophageless" mice are able to repair skin wounds with similar time course to wild-type siblings, and that repair appears scar-free as in the embryo, which also heals wounds without raising an inflammatory response. The growth factor and cytokine profile at the wound site is changed, cell death is reduced, and dying cells are instead engulfed by stand-in phagocytic fibroblasts. We also show that hyperinnervation of the wound site, previously believed to be a consequence of inflammation, is present in the PU.1 null wound, too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号