首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compounds that regulate the function(s) of nuclear receptors (NRs) are useful for biological studies and as candidate therapeutic agents. Most such compounds are agonists or antagonists. On the other hand, we have developed specific protein degradation inducers, which we designated as SNIPERs (Specific and Nongenetic IAPs-dependent Protein ERasers), for selective degradation of target proteins. SNIPERs are hybrid molecules consisting of an appropriate ligand for the protein of interest, coupled to a ligand for inhibitor of apoptosis proteins (IAPs), which target the bound protein for polyubiquitination and proteasomal degradation. We considered that protein knockdown with SNIPERs would be a promising alternative approach for modulating NR function. In this study, we designed and synthesized degradation inducers targeting retinoic acid receptor (RAR), estrogen receptor (ER), and androgen receptor (AR). These newly synthesized RAR, ER, and AR SNIPERs, 9, 11, and 13, respectively, were confirmed to significantly reduce the levels of the corresponding NRs in live cells.  相似文献   

2.
Inhibitor of apoptosis proteins (IAPs) provide a critical barrier to inappropriate apoptotic cell death through direct binding and inhibition of caspases. We demonstrate that degradation of IAPs is an important mechanism for the initiation of apoptosis in vivo. Drosophila Morgue, a ubiquitin conjugase-related protein, promotes DIAP1 down-regulation in the developing retina to permit selective programmed cell death. Morgue complexes with DIAP1 in vitro and mediates DIAP1 degradation in a manner dependent on the Morgue UBC domain. Reaper (Rpr) and Grim, but not Hid, also promote the degradation of DIAP1 in vivo, suggesting that these proteins promote cell death through different mechanisms.  相似文献   

3.
IAPs, RINGs and ubiquitylation   总被引:16,自引:0,他引:16  
The inhibitor of apoptosis (IAP) proteins all contain one or more baculoviral IAP repeat motifs, through which they interact with various other proteins. Many IAPs also have another zinc-binding motif, the RING domain, which can recruit E2 ubiquitin-conjugating enzymes and catalyse the transfer of ubiquitin onto target proteins. The number of targets of IAP-mediated ubiquitylation is increasing and recent results indicate that outcomes following ubiquitylation are tantalizingly complex. As well as regulating other proteins, the IAPs themselves are controlled by ubiquitin-mediated degradation.  相似文献   

4.
5.
Inhibitors of Apoptosis Proteins (IAPs) are a class of highly conserved proteins predominantly known for the regulation of caspases and immune signaling. However, recent evidence suggests a crucial role for these molecules in the regulation of tumor cell shape and migration by controlling MAPK, NF-κB and Rho GTPases. IAPs directly control Rho GTPases, thus regulating cell shape and migration. For instance, XIAP and cIAP1 function as the direct E3 ubiquitin ligases of Rac1 and target it for proteasomal degradation. IAPs are differentially expressed in tumor cells and have been targeted by several cancer therapeutic drugs that are currently in clinical trials. Here, we summarize the current knowledge on the role of IAPs in the regulation of cell migration and discuss the possible implications of these observations in regulating tumor cell metastases.  相似文献   

6.
In mammals, tumor necrosis factor receptor associated factors (TRAFs) are signaling adaptors that regulate diverse physiological processes, including immunity and stress responses. In Arabidopsis, MUSE13 and MUSE14 are redundant TRAF proteins serving as adaptors in the SCFCRP1 complex to facilitate the turnover of nucleotide‐binding domain and leucine‐rich repeats (NLR) immune receptors. Degradation of MUSE13 is inhibited by proteasome inhibitor, suggesting that the MUSE13 stability is controlled by the 26S proteasome. However, the E3 ligase that regulates MUSE13 level is unknown. Here we report the identification of an F‐box protein, SNIPER4 that regulates the turnover of MUSE13 and MUSE14. Protein levels of MUSE13 and MUSE14 are reduced by SNIPER4 overexpression, while higher accumulation of MUSE13 and MUSE14 is observed when dominant‐negative SNIPER4 is expressed. Furthermore, SNIPER4 associates with MUSE13 or MUSE14. Taken together, the SCFSNIPER4 complex controls the turnover of TRAF proteins for an optimum immune output.  相似文献   

7.
Inhibitors of apoptosis proteins (IAPs) suppress cell death by inactivating proapoptotic regulators, and therefore play important roles in controlling apoptosis in normal and malignant cells. Many IAPs are ubiquitin ligases, and their activity is mediated via ubiquitination and subsequent degradation of their targets. Here we corroborate a previous observation that DIAP1 (Drosophila IAP1) can be degraded via a two-step mechanism: (i) limited caspase-mediated cleavage and (ii) degradation of the released fragment via the ubiquitin N-end rule pathway. Yet, we demonstrate that this pathway is not the only one involved in DIAP1 degradation, and the intact protein can be degraded independent of prior caspase cleavage. Importantly, this mode of degradation does not require the RING-finger-mediated autoubiquitinating activity of DIAP1, believed to target many RING-finger E3s for self-destruction. Our preliminary data suggest that DIAP2 mediates DIAP1 degradation, suggesting a novel regulatory loop within the apoptotic pathway. Studying the role of the autoubiquitinating activity of DIAP1, we demonstrate that it does not involve formation of Lys48-based polyubiquitin chains, but probably chains linked via Lys63. Our preliminary data suggest that the autoubiquitination serves to attenuate the ligase activity of DIAP1 towards its exogenous substrates.  相似文献   

8.
In most cases, apoptotic cell death culminates in the activation of the caspase family of cysteine proteases, leading to the orderly dismantling and elimination of the cell. The IAPs (inhibitors of apoptosis) comprise a family of proteins that oppose caspases and thus act to raise the apoptotic threshold. Disruption of IAP-mediated caspase inhibition has been shown to be an important activity for pro-apoptotic proteins in Drosophila (Reaper, HID, and Grim) and in mammalian cells (Smac/DIABLO and Omi/HtrA2). In addition, in the case of the fly, these proteins are able to stimulate the ubiquitination and degradation of IAPs by a mechanism involving the ubiquitin ligase activity of the IAP itself. In this report, we show that the Drosophila RHG proteins (Reaper, HID, and Grim) are themselves substrates for IAP-mediated ubiquitination. This ubiquitination of Reaper requires IAP ubiquitin-ligase activity and a stable interaction between Reaper and the IAP. Additionally, degradation of Reaper can be blocked by mutating its potential ubiquitination sites. Most importantly, we also show that regulation of Reaper by ubiquitination is a significant factor in determining its biological activity. These data demonstrate a novel function for IAPs and suggest that IAPs and Reaper-like proteins mutually control each other's abundance.  相似文献   

9.
The selective degradation of target proteins with small molecules is a novel approach to the treatment of various diseases, including cancer. We have developed a protein knockdown system with a series of hybrid small compounds that induce the selective degradation of target proteins via the ubiquitin–proteasome pathway. In this study, we designed and synthesized novel small molecules called SNIPER(TACC3)s, which target the spindle regulatory protein transforming acidic coiled-coil-3 (TACC3). SNIPER(TACC3)s induce poly-ubiquitylation and proteasomal degradation of TACC3 and reduce the TACC3 protein level in cells. Mechanistic analysis indicated that the ubiquitin ligase APC/CCDH1 mediates the SNIPER(TACC3)-induced degradation of TACC3. Intriguingly, SNIPER(TACC3) selectively induced cell death in cancer cells expressing a larger amount of TACC3 protein than normal cells. These results suggest that protein knockdown of TACC3 by SNIPER(TACC3) is a potential strategy for treating cancers overexpressing the TACC3 protein.Inhibitors of microtubule polymerization or depolymerization such as Vinca alkaloids and taxanes, respectively, are widely used as anti-cancer drugs. They arrest cancer cells, inducing mitotic catastrophe and cancer cell death. However, these drugs also affect microtubule function in non-dividing cells and have serious side effects, such as peripheral neuropathy, which limit their utility.1 Recently, inhibitors of spindle-regulatory proteins, such as mitotic kinases (Aurora kinases and Polo-like kinases) and a motor protein (Eg5/Ksp) have attracted considerable attention, but they have not been developed clinical use yet.2, 3Transforming acidic coiled-coil-3 (TACC3) is another spindle-regulatory protein.4, 5 During mitosis, TACC3 localizes to the mitotic spindle and has a critical role in spindle assembly, chromosomal function and mitotic progression.6, 7, 8, 9, 10, 11 Studies using microarray and immunohistochemical analysis showed that TACC3 is overexpressed in many human cancers, including ovarian cancer, breast cancer, squamous cell carcinoma and lymphoma.12, 13, 14 Depletion of TACC3 results in chromosome alignment defects, multi-polar spindle formation, mitotic cell death and/or a postmitotic cell cycle arrest.15, 16, 17, 18, 19, 20 Additionally, conditional disruption of TACC3 has been shown to regress thymic lymphomas in p53-deficient mice without inducing any overt abnormalities in normal tissues.21 These findings suggest that TACC3 is a molecular target for anti-cancer drug discovery.The development of a strategy for the selective degradation may be a useful approach to the discovery of novel drugs. Based on the ubiquitin–proteasome system (UPS), we have devised a protein knockdown system for inducing the selective degradation of target proteins by using specifically designed hybrid small compounds.22, 23, 24, 25, 26, 27, 28, 29 These compounds, which we have termed SNIPER (Specific and Non-genetic IAP-dependent Protein ERaser), are composed of two different ligands connected by a linker; one is a ligand for cellular inhibitor of apoptosis protein 1 (cIAP1) and the other a ligand for the target protein. Accordingly, SNIPER is expected to crosslink the ubiquitin–ligase cIAP1 and the target protein in the cells, thereby inducing ubiquitylation and, ultimately, proteasomal degradation of the target protein. To date, we have constructed SNIPERs that target cellular retinoic acid binding protein-II (CRABP-II) and nuclear receptors such as estrogen receptor α (ERα) for degradation.22, 23, 24, 25, 26, 27, 28 In this study, we designed and synthesized novel SNIPERs targeting TACC3, that is, SNIPER(TACC3)s, that induce proteasomal degradation of the TACC3 protein. We also show that cancer cells expressing a large amount of the TACC3 protein readily undergo cell death as the result of SNIPER(TACC3) treatment.  相似文献   

10.
Smac/Diablo and HtrA2/Omi are inhibitors of apoptosis (IAP)-binding proteins released from the mitochondria of human cells during apoptosis and regulate apoptosis by liberating caspases from IAP inhibition. Here we describe the identification of a proteolytically processed isoform of the polypeptide chain-releasing factor GSPT1/eRF3 protein, which functions in translation, as a new IAP-binding protein. In common with other IAP-binding proteins, the processed GSPT1 protein harbors a conserved N-terminal IAP-binding motif (AKPF). Additionally, processed GSPT1 interacts biochemically with IAPs and could promote caspase activation, IAP ubiquitination and apoptosis. The IAP-binding motif of the processed GSPT1 is absolutely required for these activities. Our findings are consistent with a model whereby processing of GSPT1 into the IAP-binding isoform could potentiate apoptosis by liberating caspases from IAP inhibition, or target IAPs and the processed GSPT1 for proteasome-mediated degradation.  相似文献   

11.
Yang YL  Li XM 《Cell research》2000,10(3):169-177
IAPs (inhibitors of apoptosis) are a family of proteins containing one or more characteristic BIR domains.These proteins have multiple biological activities that include binding and inhibiting caspases,regulating cell cycle progression,and modulating receptor-mediated signal transduction.Our recent studies found the IAP family members XIAP and c-IAP1 are ubiquitinated and degraded in proteasomes in response to apoptotic stimuli in T cells,and their degradation appears to be important for T cells to commit to death.In addition to three BIR domains,each of these IAPs also contains a RING finger domain. We found this region confers ubiquitin protease ligase(E3) activity to IAPs,and is responsible for the auto-ubiquitination and degradation of IAPs after an apoptotic stimulus.Given the fact that IAPs can bind a variety of proteins,such as caspases and TRAFs,it will be of interest to characterize potential substrates of the E3 activity of IAPs and the effects of ubiquitination by IAPs on signal transduction,cell cycle,and apoptosis.  相似文献   

12.
The Inhibitor of Apoptosis proteins (IAPs) are key repressors of apoptosis. Several IAP proteins contain a RING domain that functions as an E3 ubiquitin ligase involved in the ubiquitin-proteasome pathway. Here we investigated the interplay of ubiquitin-proteasome pathway and RING-mediated IAP turnover. We found that the CARD-RING domain of cIAP1 (cIAP1-CR) is capable of down-regulating protein levels of RING-bearing IAPs such as cIAP1, cIAP2, XIAP, and Livin, while sparing NAIP and Survivin, which do not possess a RING domain. To determine whether polyubiquitination was required, we tested the ability of cIAP1-CR to degrade IAPs under conditions that impair ubiquitination modifications. Remarkably, although the ablation of E1 ubiquitin-activating enzyme prevented cIAP1-CR-mediated down-regulation of cIAP1 and cIAP2, there was no impact on degradation of XIAP and Livin. XIAP mutants that were not ubiquitinated in vivo were readily down-regulated by cIAP1-CR. Moreover, XIAP degradation in response to cisplatin and doxorubicin was largely prevented in cIAP1-silenced cells, despite cIAP2 up-regulation. The knockdown of cIAP1 and cIAP2 partially blunted Fas ligand-mediated down-regulation of XIAP and protected cells from cell death. Together, these results show that the E3 ligase RING domain of cIAP1 targets RING-bearing IAPs for proteasomal degradation by ubiquitin-dependent and -independent pathways.  相似文献   

13.
Inhibitors of Apoptosis Proteins (IAPs) are evolutionarily well conserved and have been recognized as the key negative regulators of apoptosis. Recently, the role of IAPs as E3 ligases through the Ring domain was revealed. Using proteomic analysis to explore potential target proteins of DIAP1, we identified Drosophila Endonuclease G (dEndoG), which is known as an effector of caspase-independent cell death. In this study, we demonstrate that human EndoG interacts with IAPs, including human cellular Inhibitor of Apoptosis Protein 1 (cIAP1). EndoG was ubiquitinated by IAPs in vitro and in human cell lines. Interestingly, cIAP1 was capable of ubiquitinating EndoG in the presence of wild-type and mutant Ubiquitin, in which all lysines except K63 were mutated to arginine. cIAP1 expression did not change the half-life of EndoG and cIAP1 depletion did not alter its levels. Expression of dEndoG 54310, in which the mitochondrial localization sequence was deleted, led to cell death that could not be suppressed by DIAP1 in S2 cells. Moreover, EndoG-mediated cell death induced by oxidative stress in HeLa cells was not affected by cIAP1. Therefore, these results indicate that IAPs interact and ubiquitinate EndoG via K63-mediated isopeptide linkages without affecting EndoG levels and EndoG-mediated cell death, suggesting that EndoG ubiquitination by IAPs may serve as a regulatory signal independent of proteasomal degradation.  相似文献   

14.
Inhibitors of apoptosis (IAPs) inhibit caspases, thereby preventing proteolysis of apoptotic substrates. IAPs occlude the active sites of caspases to which they are bound and can function as ubiquitin ligases. IAPs are also reported to ubiquitinate themselves and caspases. Several proteins induce apoptosis, at least in part, by binding and inhibiting IAPs. Among these are the Drosophila melanogaster proteins Reaper (Rpr), Grim, and HID, and the mammalian proteins Smac/Diablo and Omi/HtrA2, all of which share a conserved amino-terminal IAP-binding motif. We report here that Rpr not only inhibits IAP function, but also greatly decreases IAP abundance. This decrease in IAP levels results from a combination of increased IAP degradation and a previously unrecognized ability of Rpr to repress total protein translation. Rpr-stimulated IAP degradation required both IAP ubiquitin ligase activity and an unblocked Rpr N terminus. In contrast, Rpr lacking a free N terminus still inhibited protein translation. As the abundance of short-lived proteins are severely affected after translational inhibition, the coordinated dampening of protein synthesis and the ubiquitin-mediated destruction of IAPs can effectively reduce IAP levels to lower the threshold for apoptosis.  相似文献   

15.
Inhibitor of apoptosis proteins (IAPs) are critical regulators of apoptosis. Recent evidence suggests that in some situations, induction of apoptosis initiates general repression of translation, as well as the targeted ubiquitination and degradation of IAPs.  相似文献   

16.
Inhibitors of apoptosis proteins (IAPs) are a highly conserved class of multifunctional proteins. Rac1 is a well-studied Rho GTPase that controls numerous basic cellular processes. While the regulation of nucleotide binding to Rac1 is well understood, the molecular mechanisms controlling Rac1 degradation are not known. Here, we demonstrate X-linked IAP (XIAP) and cellular IAP1 (c-IAP1) directly bind to Rac1 in a nucleotide-independent manner to promote its polyubiquitination at Lys147 and proteasomal degradation. These IAPs are also required for degradation of Rac1 upon CNF1 toxin treatment or RhoGDI depletion. Consistently, downregulation of XIAP or c-IAP1 by various strategies led to an increase in Rac1 protein levels in primary and tumour cells, leading to an elongated morphology and enhanced cell migration. Further, XIAP counteracts Rac1-dependent cellular polarization in the developing zebrafish hindbrain and promotes the delamination of neurons from the normal tissue architecture. These observations unveil an evolutionarily conserved role of IAPs in controlling Rac1 stability thereby regulating the plasticity of cell migration and morphogenesis.  相似文献   

17.
Apoptosis represents a fundamental biological process that relies on the activation of caspases. Inhibitor of apoptosis (IAP) proteins represent a group of negative regulators of both caspases and cell death. The current model dictates that IAPs suppress apoptosis by blocking the catalytic pocket of effector caspases thereby preventing substrate entry. Here, we provide evolutionary evidence for the functional interplay between insect IAPs and the N-end rule-associated ubiquitylation machinery in neutralising effector caspases and cell death. We find that IAPs require 'priming' in order to function as antiapoptotic molecules. Consistently, we demonstrate that the antiapoptotic activity of diverse insect IAPs is activated by effector caspases, providing the cell with a sensitive strategy to monitor and neutralise active caspases. Almost 300 million years of evolutionary selection pressure has preserved a caspase cleavage site in insect IAPs that, following processing by a caspase, exposes a binding motif for the N-end-rule-associated degradation machinery. Recruitment of this ubiquitylation machinery into the 'cleaved-IAP:caspase' complex provides a mechanism to negatively regulate effector caspases and block apoptosis. Furthermore, comparisons between cellular and several viral IAPs suggest differences in their modes of action, as OpIAP3, CpGV-IAP3 and HcNPV-IAP3 fail to associate with several effector caspases. Evolutionary conservation of the N-end-rule degradation pathway in IAP-mediated regulation of apoptosis further corroborates the physiological relevance of this ubiquitylation-associated process.  相似文献   

18.
Inhibitor of apoptosis proteins (IAPs) are negative regulators of apoptosis. As IAPs are overexpressed in many tumors, where they confer chemoresistance, small molecules inactivating IAPs have been proposed as anticancer agents. Accordingly, a number of IAP-binding pro-apoptotic compounds that mimic the sequence corresponding to the N-terminal tetrapeptide of Smac/DIABLO, the natural endogenous IAPs inhibitor, have been developed. Here, we report the crystal structures of the BIR3 domain of cIAP1 in complex with Smac037, a Smac-mimetic known to bind potently to the XIAP-BIR3 domain and to induce degradation of cIAP1, and in complex with the novel Smac-mimetic compound Smac066. Thermal stability and fluorescence polarization assays show the stabilizing effect and the high affinity of both Smac037 and Smac066 for cIAP1- and cIAP2-BIR3 domains.  相似文献   

19.
The inhibitor of apoptosis (IAP) proteins bind and inhibit caspases via their baculovirus IAP repeat domains. Some of these IAPs are capable of ubiquitinating themselves and their interacting proteins through the ubiquitin-protein isopeptide ligase activity of their RING domain. The Drosophila IAP antagonists Reaper, Hid, and Grim can accelerate the degradation of Drosophila IAP1 and some mammalian IAPs by promoting their ubiquitin-protein isopeptide ligase activity. Here we show that Smac/DIABLO, a mammalian functional homolog of Reaper/Hid/Grim, selectively causes the rapid degradation of c-IAP1 and c-IAP2 but not XIAP and Livin in HeLa cells, although it efficiently promotes the auto-ubiquitination of them all. Smac binding to c-IAP via its N-terminal IAP-binding motif is the prerequisite for this effect, which is further supported by the findings that Smac N-terminal peptide is sufficient to enhance c-IAP1 ubiquitination, and Smac no longer promotes the ubiquitination of mutant c-IAP1 lacking all three baculovirus IAP repeat domains. In addition, different IAPs require the same ubiquitin-conjugating enzymes UbcH5a and UbcH6 for their ubiquitination. Taken together, Smac may serve as a key molecule in vivo to selectively reduce the protein level of c-IAPs through the ubiquitin/proteasome pathway.  相似文献   

20.
Feltham R  Khan N  Silke J 《IUBMB life》2012,64(5):411-418
The Inhibitor of apoptosis (IAP) proteins are key negative regulators of cell death, whose amplification has been correlated with tumor progression. Due to the presence of a RING domain, IAP proteins are classed as ubiquitin ligases and regulate cell survival by orchestrating a variety of ubiquitin modifications. Ubiquitin protein modification is fundamental in cell signaling and different ubiquitin modifications may label proteins for destruction, relocalization or provide a recruitment platform for ubiquitin binding proteins. Ubiquitin performs a myriad of different functions because it can be conjugated to a large range of target proteins through numerous different types of ubiquitin linkages. Despite the fact that ubiquitin is extremely versatile, the E3s such as the IAPs provide an important level of control due to their specificity for certain substrates. Several recent reviews have discussed the role of IAPs in regulating immune signaling so we have therefore focused our review on the interplay between IAPs and ubiquitin and discussed the importance of this relationship for the regulation of themselves, specific substrates and various cell death and survival signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号