首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Stevenson CG  Beane WS 《PloS one》2010,5(12):e15310
Planarians have recently become a popular model system for the study of adult stem cells, regeneration and polarity. The system is attractive for both undergraduate and graduate research labs, since planarian colonies are low cost and easy to maintain. Also in situ hybridization, immunofluorescence and RNA-interference (RNAi) gene knockdown techniques have been developed for planarian studies. However, imaging of live worms (particularly at high magnifications) is difficult because animals are strongly photophobic; they quickly move away from light sources and out of frame. The current methods available to inhibit movement in planarians include RNAi injection and exposure to cold temperatures. The former is labor and time intensive, while the latter precludes the use of many fluorescent reporter dyes. Here, we report a simple, inexpensive and reversible method to immobilize planarians for live imaging. Our data show that a short 1 hour treatment with 3% ethanol (EtOH) is sufficient to inhibit both the fine and gross movements of Schmidtea mediterranea planarians, of the typical size used (4-6 mm), with full recovery of movement within 3-4 hours. Importantly, EtOH treatment did not interfere with regeneration, even after repeated exposure, nor lyse epithelial cells (as assayed by H&E staining). We demonstrate that a short exposure to a low concentration of EtOH is a quick and effective method of immobilizing planarians, one that is easily adaptable to planarians of all sizes and will increase the accessibility of live imaging assays to planarian researchers.  相似文献   

6.
Several families of evolutionarily conserved axon guidance cues orchestrate the precise wiring of the nervous system during embryonic development. The remarkable plasticity of freshwater planarians provides the opportunity to study these molecules in the context of neural regeneration and maintenance. Here we characterize a homologue of the Slit family of guidance cues from the planarian Schmidtea mediterranea. Smed-slit is expressed along the planarian midline, in both dorsal and ventral domains. RNA interference (RNAi) targeting Smed-slit results in the collapse of many newly regenerated tissues at the midline; these include the cephalic ganglia, ventral nerve cords, photoreceptors, and the posterior digestive system. Surprisingly, Smed-slit RNAi knockdown animals also develop morphologically distinguishable, ectopic neural structures near the midline in uninjured regions of intact and regenerating planarians. These results suggest that Smed-slit acts not only as a repulsive cue required for proper midline formation during regeneration but that it may also act to regulate the behavior of neural precursors at the midline in intact planarians.  相似文献   

7.
8.
9.
10.
11.
12.
13.
为了促进对四倍体拟南芥(A.suecica)的研究,阐明多倍体植物在染色体加倍过程中遗传物质的变化,从而在分子层面上解释多倍体植物的环境适应和进化机制,描述了一套基于第二代测序技术的转录组短序列组装和生物信息学分析方法.通过对23 000 000条来至于Illumina测序平台的序列数据进行SOAPdenovo组装,以...  相似文献   

14.
Planarians represent an excellent model to study the processes of body axis and organ re-specification during regeneration. Previous studies have revealed a conserved role for the bone morphogenetic protein (BMP) pathway and its intracellular mediators Smad1/5/8 and Smad4 in planarian dorsoventral (DV) axis re-establishment. In an attempt to gain further insight into the role of this signalling pathway in planarians, we have isolated and functionally characte-rized the inhibitory Smads (I-Smads) in Schmidtea mediterranea. Two I-Smad homologues have been identified: Smed-smad6/7-1 and Smed-smad6/7-2. Expression of smad6/7-1 was detected in the parenchyma, while smad6/7-2 was found to be ex-pressed in the central nervous system and the eyes. Neither single smad6/7-1 and smad6/7-2 nor double smad6/7-1,-2 silencing gave rise to any apparent disruption of the DV axis. However, both regenerating and intact smad6/7-2 (RNAi) planarians showed defects in eye morphogenesis and displayed small, rounded eyes that lacked the anterior subpopulation of photoreceptor cells. The number of pigment cells was also reduced in these animals at later stages of regeneration. In contrast, after low doses of Smed-bmp(RNAi), planarians regenerated larger eyes in which the anterior subpopulation of photoreceptor cells was expanded. Our results suggest that Smed-smad6/7-2 and Smed-bmp control the re-specification and maintenance of anterior photoreceptor cell number in S. mediterranea.  相似文献   

15.
16.
17.
18.
19.
Planarian flatworms are known as the masters of regeneration, re-growing an entire organism from as little as 1/279th part of their body. While the proteomics of these processes has been studied extensively, the planarian lipodome remains relatively unknown. In this study we investigate the lipid profile of planarian tissue sections with imaging Time-of-Flight – Secondary-Ion-Mass-Spectrometry (ToF-SIMS). ToF-SIMS is a label-free technique capable of gathering intact, location specific lipid information on a cellular scale. Lipid identities are confirmed using LC-MS/MS. Our data shows that different organ structures within planarians have unique lipid profiles. The 22-carbon atom poly unsaturated fatty acids (PUFAs) which occur in unusually high amounts in planarians are found to be mainly located in the testes. Additionally, we observe that planarians contain various odd numbered fatty acid species, that are usually found in bacteria, localized in the reproductive and ectodermal structures of the planarian. An abundance of poorly understood ether fatty acids and ether lipids were found in unique areas in planarians as well as a new, yet unidentified class of potential lipids in planarian intestines. Identifying the location of these lipids in the planarian body provides insights into their bodily functions and, in combination with knowledge about their diet and their genome, enables drawing conclusions about planarian fatty acid processing.  相似文献   

20.
Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号