首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatography plays an important role in the downstream processing of proteins. Over the past years, there has been a steady move toward the adoption of more rigid, porous particles to combine ease of manufacture with increased levels of productivity. The latter is still constrained by the onset of compression where the level of wall support becomes incapable of withstanding flow‐induced particle drag. In this study, we investigate how, by the installation of cylindrical column inserts, it is possible to enhance the level of wall support. Experiments were conducted to examine the effect of the position of the insert in the column, and also of the insert dimensions on the critical velocity at which the onset of compression occurs. It was found that when installed at the bottom of the column, inserts can provide up to a 20% increase in critical velocity without significantly affecting column hydrodynamics, as measured by the level of axial dispersion. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

2.
3.
The activator protein-1 (AP-1) complex plays a crucial role in numerous pathways, and its ability to induce tumorigenesis is well documented. Thus, AP-1 represents an interesting therapeutic target. We selected peptides from phage display and compared their ability to disrupt the cFos/cJun interaction to a previously described in vivo protein-fragment complementation assay (PCA). A cJun-based library was screened to enrich for peptides that disrupt the AP-1 complex by binding to the cFos coiled-coil domain. Interestingly, phage display identified one helix, JunWPh1 [phage-selected winning peptide (clone 1) targeting cFos], which differs in only 2 out of 10 randomized positions to JunW (PCA-selected winning peptide targeting cFos). Phage-selected peptides revealed higher affinity to cFos than wild-type cJun, harboring a Tm of 53 °C compared to 16 °C for cFos/cJun or 44 °C for cFos/JunW. In PCA growth assays in the presence of cJun as competitor, phage-selected JunWPh1 conferred shorter generation times than JunW. Bacterial growth was barely detectable, using JunWPh1 as a competitor for the wild-type cJun/cFos interaction, indicating efficient cFos removal from the dimeric wild-type complex. Importantly, all inhibitory peptides were able to interfere with DNA binding as demonstrated in gel shift assays. The selected sequences have consequently improved our ‘bZIP coiled-coil interaction prediction algorithm’ in distinguishing interacting from noninteracting coiled-coil sequences. Predicting and manipulating protein interaction will accelerate the systems biology field, and generated peptides will be valuable tools for analytical and biomedical applications.  相似文献   

4.
H Qian 《Biophysical journal》1994,67(1):349-355
A simple thermodynamic formalism is presented to model the conformational transition between a random-coil monomeric peptide and a coiled-coil helical dimer. The coiled-coil helical dimer is the structure of a class of proteins also called leucine zipper, which has been studied intensively in recent years. Our model, which is appropriate particularly for short peptides, is an alternative to the theory developed by Skolnick and Holtzer. Using the present formalism, we discuss the multi-equilibriatory nature of this transition and provide an explanation for the apparent two-state behavior of coiled-coil formation when the helix-coil transition is coupled to dimerization. It is found that such coupling between multi-equilibria and a true two-state transition can simplify the data analysis, but care must be taken in using the overall association constant to determine helix propensities (w) of single residues. Successful use of the two-state model does not imply that the helix-coil transition is all-or-none. The all-or-none assumption can provide good numerical estimates when w is around unity (0.35 < or = w < or = 1.35), but when w is small (w < 0.01), similar estimations can lead to large errors. The theory of the helix-coil transition in denaturation experiments is also discussed.  相似文献   

5.
6.
Ono S  Yano Y  Matsuzaki K 《Biopolymers》2012,98(3):234-238
We have developed a method of rapidly labeling membrane proteins in living cells using a high-affinity heterodimeric coiled-coil construct containing an E3 tag (EIAALEK)(3) genetically fused to the target protein and a K4 probe (KIAALKE)(4) labeled with a fluorophore such as tetramethylrhodamine (TMR) at its N-terminus (TMR-K4). However, coiled-coil labeling cannot be applied to highly negatively charged cell lines such as HEK293, because of the nonspecific adsorption of the positively charged K4 probes to cell membranes. To reduce the net positive charge, we synthesized new probes that include phosphoserine residues (pSer) between the K4 sequence and TMR fluorophore (TMR-(pSer)(n)-K4, [n = 1-3]). The affinity of the pSer-introduced probes was comparable to that of the TMR-K4 probe. However, the TMR-(pSer)(2)-K4 and TMR-(pSer)(3)-K4 probes tended to aggregate during labeling. In contrast, TMR-pSer-K4, which was as soluble as TMR-K4, achieved higher signal/background ratios (30-100) for four host cell lines (HEK293, HeLa, SH-SY5Y, and PC12) than did TMR-K4 (~10 for HEK293 cells), demonstrating that the improved probe can be used for various types of cells.  相似文献   

7.
NuMA/centrophilin: sequence analysis of the coiled-coil rod domain.   总被引:1,自引:0,他引:1       下载免费PDF全文
D A Parry 《Biophysical journal》1994,67(3):1203-1206
Nuclear mitotic apparatus protein (NuMA), also known as centrophilin, has been shown in previous work to contain a centrally located sequence of length 1485 residues that has both a heptad substructure and a high propensity for alpha-helix formation. Further analysis of this sequence here has revealed that NuMA will form a two-stranded coiled-coil structure with multiple (18) points at which the conformation is interrupted either by proline-containing segments or by discontinuities in the phasing of the heptad substructure. It has also been shown that the two chains will be parallel (rather than antiparallel), that they will lie in axial register, and that this arrangement will be stabilized by a large number of interchain ionic interactions. Interestingly the coiled-coil rod domain is also shown to lack any significant long-range periodicity in the linear distribution of either its acidic or its basic residues. Hence there is no direct evidence from the sequence data that NuMA molecules will aggregate to form closely packed filaments within nuclear space.  相似文献   

8.
Recently, we designed a short alpha-helical fibril-forming peptide (alphaFFP) that can form alpha-helical nanofibrils at acid pH. The non-physiological conditions of the fibril formation hamper biomedical application of alphaFFP. It was hypothesized that electrostatic repulsion between glutamic acid residues present at positions (g) of the alphaFFP coiled-coil sequence prevent the fibrillogenesis at neutral pH, while their protonation below pH 5.5 triggers axial growth of the fibril. To test this hypothesis, we synthesized alphaFFPs where all glutamic acid residues were substituted by glutamines or serines. The electron microscopy study confirmed that the modified alphaFFPs form nanofibrils in a wider range of pH (2.5-11). Circular dichroism spectroscopy, sedimentation, diffusion and differential scanning calorimetry showed that the fibrils are alpha-helical and have elongated and highly stable cooperative tertiary structures. This work leads to a better understanding of interactions that control the fibrillogenesis of the alphaFFPs and opens opportunities for their biomedical application.  相似文献   

9.
Restriction mapping of recombinant plasmids indicated the presence of poison sequence(s) in monkey mtDNA. These plasmids were constructed from a 5.2 K.b. BglII mtDNA fragment and pRSVneo or pdel9 as cloning vectors. The poison sequence(s) caused genetic rearrangement of the vectors' nucleotide sequences. Deletion of the suspected poison sequence(s) from the mtDNA fragment increased the transformation efficiency of the produced recombinant plasmids and conserved the vectors' original nucleotide sequences.  相似文献   

10.
11.
It is well appreciated that reactive oxygen species (ROS) are deleterious to mammals, including humans, especially when generated in abnormally large quantities from cellular metabolism. Whereas the mechanisms leading to the production of ROS are rather well delineated, the mechanisms underlying tissue susceptibility or tolerance to oxidant stress remain elusive. Through an experimental selection over many generations, we have previously generated Drosophila melanogaster flies that tolerate tremendous oxidant stress and have shown that the family of antimicrobial peptides (AMPs) is over-represented in these tolerant flies. Furthermore, we have also demonstrated that overexpression of even one AMP at a time (e.g. Diptericin) allows wild-type flies to survive much better in hyperoxia. In this study, we used a number of experimental approaches to investigate the potential mechanisms underlying hyperoxia tolerance in flies with AMP overexpression. We demonstrate that flies with Diptericin overexpression resist oxidative stress by increasing antioxidant enzyme activities and preventing an increase in ROS levels after hyperoxia. Depleting the GSH pool using buthionine sulfoximine limits fly survival, thus confirming that enhanced survival observed in these flies is related to improved redox homeostasis. We conclude that 1) AMPs play an important role in tolerance to oxidant stress, 2) overexpression of Diptericin changes the cellular redox balance between oxidant and antioxidant, and 3) this change in redox balance plays an important role in survival in hyperoxia.  相似文献   

12.
13.
Rapid sequence analysis of small peptides   总被引:6,自引:0,他引:6  
  相似文献   

14.
Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.  相似文献   

15.
The study of synthetic peptides corresponding to discrete regions of proteins has facilitated the understanding of protein structure-activity relationships. Short peptides can also be used as powerful therapeutic agents. However, in many instances, small peptides are prone to rapid degradation or aggregation and may lack the conformation required to mimic the functional motifs of the protein. For peptides to function as pharmacologically active agents, efficient production or expression, high solubility, and retention of biological activity through purification and storage steps are required. We report here the design, expression, and functional analysis of eight engineered GST proteins (denoted GSHKTs) in which peptides ranging in size from 8 to 16 amino acids and derived from human high molecular weight kininogen (HK) domain 5 were inserted into GST (between Gly-49 and Leu-50). Peptides derived from HK are known to inhibit cell proliferation, angiogenesis, and tumor metastasis, and the biological activity of the HK peptides was dramatically (>50-fold) enhanced following insertion into GST. GSHKTs are soluble and easily purified from Escherichia coli by affinity chromatography. Functionally, these hybrid proteins cause inhibition of endothelial cell proliferation. Crystallographic analysis of GSHKT10 and GSHKT13 (harboring 10- and 13-residue HK peptides, respectively) showed that the overall GST structure was not perturbed. These results suggest that the therapeutic efficacy of short peptides can be enhanced by insertion into larger proteins that are easily expressed and purified and that GST may potentially be used as such a carrier.  相似文献   

16.
17.
Stat3 is activated by cytokines and growth factors via specific tyrosine phosphorylation, dimerization, and nuclear translocation. However, the mechanism involved in its nuclear translocation is unclear. In this study, by systematic deletion and site-directed mutagenesis we identified Arg-214/215 in the alpha-helix 2 region of the coiled-coil domain of Stat3 as a novel sequence element essential for its nuclear translocation, stimulated by epidermal growth factor as well as by interleukin-6. Furthermore, we identified Arg-414/417 in the DNA binding domain as also required for the nuclear localization of Stat3. This sequence element corresponds to Lys-410/413 of Stat1, a reported sequence for Stat1 nuclear translocation. On the other hand, Leu-411 of Stat3, corresponding to Leu-407 of Stat1, a necessary residue for Stat1 nuclear transport, is not essential for Stat3 nuclear import. The mutant of Arg-214/215 or Arg-414/417 was shown to be tyrosyl-phosphorylated normally but failed to enter the nucleus in response to epidermal growth factor or interleukin-6. The defect, however, can be rescued by the wild-type Stat3 but cannot be compensated by these two mutants. Mutations on Arg-414/417, but not Arg-214/215, destroy the DNA binding activity of Stat3. Our data for the first time identified a sequence element located in the coiled-coil domain that is involved in the ligand-induced nuclear translocation of Stat3. This novel sequence together with a conserved sequence element in the DNA binding domain coordinates to mediate the nuclear translocation of Stat3.  相似文献   

18.
19.
20.
Hillar A  Tripet B  Zoetewey D  Wood JM  Hodges RS  Boggs JM 《Biochemistry》2003,42(51):15170-15178
Electron paramagnetic resonance spectroscopy was used to determine relative peptide orientation within homodimeric, alpha-helical coiled-coil structures. Introduction of cysteine (Cys) residues into peptides/proteins for spin labeling allows detection of their oligomerization from exchange broadening or dipolar interactions between residues within 25 A of each other. Two synthetic peptides containing Cys substitutions were used: a 35-residue model peptide and the 30-residue ProP peptide. The model peptide is known to form a stable, parallel homodimeric coiled coil, which is partially destabilized by Cys substitutions at heptad a and d positions (peptides C30a and C33d). The ProP peptide, a 30-residue synthetic peptide, corresponds to residues 468-497 of osmoregulatory transporter ProP from Escherichia coli. It forms a relatively unstable, homodimeric coiled coil that is predicted to be antiparallel in orientation. Cys was introduced in heptad g positions of the ProP peptide, near the N-terminus (K473C, creating peptide C473g) or closer to the center of the sequence (E480C, creating peptide C480g). In contrast to the destabilizing effect of Cys substitution at the core heptad a or d positions of model peptides C30a and C33d, circular dichroism spectroscopy showed that Cys substitutions at the heptad g positions of the ProP peptide had little or no effect on coiled-coil stability. Thermal denaturation analysis showed that spin labeling increased the stability of the coiled coil for all peptides. Strong exchange broadening was detected for both C30a and C33d, in agreement with a parallel structure. EPR spectra of C480g had a large hyperfine splitting of about 90 G, indicative of strong dipole-dipole interactions and a distance between spin-labeled residues of less than 9 A. Spin-spin interactions were much weaker for C473g. These results supported the hypothesis that the ProP peptide primarily formed an antiparallel coiled coil, since formation of a parallel dimer should result in similar spin-spin interactions for the spin-labeled Cys at both sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号