首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Formaldehyde dehydrogenase was isolated and purified in an overall yield of 12% from cell-free extract of Pseudomonas putida C-83 by chromatographies on columns of DEAE-cellulose, DEAE-Sephadex A-50, and hydroxyapatite. The purified enzyme was homogeneous as judged by disc gel electrophoresis and was most active at pH 7.8 using formaldehyde as a substrate. The enzyme was also active toward acetaldehyde, propionaldehyde, glyoxal, and pyruvaldehyde, though the reaction rates were low. The enzyme was NAD+-linked but did not require the external addition of glutathione, in contrast with the usual formaldehyde dehydrogenase from liver mitochondria, baker's yeast, and some bacteria. The enzyme was markedly inhibited by Ni2+, Pd2+, Hg2+, p-chloromercuribenzoate, and phenylmethanesulfonyl fluoride. The molecular weight of the enzyme was estimated to be 150,000 by the gel filtration method, and analysis by SDS-polyacrylamide gel electrophoresis indicated that the enzyme was composed of two subunit monomers. Kinetic analysis gave Km values of 67 microM for formaldehyde and 56 microM for NAD+, and suggested that the reaction proceeds by a "Ping-pong" mechanism. The enzyme catalyzed the oxidation of formaldehyde accompanied by the stoichiometric reduction of NAD+, but no reverse reaction was observed.  相似文献   

3.
Nicotinamide adenine dinucleotide-linked malate dehydrogenase has been purified from Pseudomonas testosteroni (ATCC 11996). The purification represents over 450-fold increase in specific activity. The amino acid composition of the enzyme was determined and found to be quite different from the composition of the malate dehydrogenases from animal sources as well as from Escherichia coli. Despite this difference, however, the data show that the enzymatic properties of the purified enzyme are remarkably similar to those of other malate dehydrogenases that have been previously studied. The Pseudomonas enzyme has a molecular weight of 74,000 and consists of two subunits of identical size. In addition to L-malate, the enzyme slowly oxidizes other four-carbon dicarboylates having an alpha-hydroxyl group of S configuration such as meso- and (-) tartrate. Rate-determining steps, which differ from that of the reaction involving L-malate, are discussed for the reaction involving these alternative substrates. Oxidation of hydroxymalonate, a process previously undetected with other malate dehydrogenases, is demonstrated fluorometrically. Hydroxymalonate and D-malate strongly enhance the fluorescence of the reduced nicotinamide adenine dinucleotide bound to the enzyme. The enzyme is A-stereospecific with respect to the coenzyme. Malate dehydrogenase is present in a single form in the Pseudomonas. The susceptibility of the enzyme to activation or inhibition by its substrates-particularly the favoring of the oxidation of malate at elevated concentrations-strongly resembles the properties of the mitochondrial enzymes. The present study reveals that whereas profound variations in chemical composition have occurred between the prokaryotic and eukaryotic enzymes, the physical and catalytic properties of malate dehydrogenase, unlike lactate dehydrogenase, are well conserved during the evolutionary process.  相似文献   

4.
Xanthine dehydrogenase (EC 1.2.1.37) from Pseudomonas acidovorans has been purified to near homogeneity (approx. 65-fold). The enzyme has a molecular weight of about 275 000. Electrophoresis in gels containing sodium dodecyl sulphate showed the presence of two types of subunit with molecular weights of about 81 000 and 63 000. Thus the intact molecule probably contains two of each type of subunit. Xanthine and hypoxanthine are good substrates, and NAD+ is an effective electron acceptor. With xanthine and NAD+ as substrates the purified enzyme has a specific activity of about 20 mumol NADH formed/min per mg protein. Michaelis constants for xanthine and NAD+ are 0.07 and 0.12 mM, respectively, and for hypoxanthine and NAD+ 0.29 and 0.16 mM, respectively.  相似文献   

5.
6.
7.
The purification of (+)-cis-1(S),2(R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase from cells of Pseudomonas putida grown with toluene as the sole source of carbon and energy is reported. The molecular weight of the enzyme is 104,000 at pH 9.7. The enzyme is composed of four apparently identical subunits with molecular weights of 27,000. The enzyme is specific for nicotinamide adenine dinucleotide and oxidizes a number of cis-dihydrodiols. Both enantiomers of a racemic mixture of cis-1,2-dihydroxyl-1,2-dihydronaphthalene dihydrodiol are oxidized by the enzyme. No enzymatic activity is observed with trans-1,2-dihydroxyl-1,2-dihydronaphthalene dihydrodiol.  相似文献   

8.
Carnitine dehydrogenase (carnitine:NAD+ oxidoreductase, EC 1.1.1.108) from Pseudomonas putida IFP 206 catalyzes the oxidation of L-carnitine to 3-dehydrocarnitine. The enzyme was purified 72-fold to homogeneity as judged by polyacrylamide gel electrophoresis. The molecular mass of this enzyme is 62 kDa and consists of two identical subunits. The isoelectric point was found to be 4.7. the carnitine dehydrogenase is specific for L-carnitine and NAD+. The optimum pH for enzymatic activity in the oxidation reaction was found to be 9.0 and 7.0 in the reduction reaction. The optimal temperature is 30 degrees C. The Km values for substrates were determined.  相似文献   

9.
10.
We purified branched-chain keto acid dehydrogenase to a specific activity of 10 mumol/min per mg of protein from Pseudomonas putida grown on valine. The purified enzyme was active with 2-ketoisovalerate, 2-ketoisocaproate, and 2-keto-3-methylvalerate in a ratio of 1.0:0.8:0.7 but showed no activity with either pyruvate or 2-ketoglutarate. There were four polypeptides in the purified enzyme (molecular weights, 49,000, 46,000, 39,000, and 37,000). The purified enzyme was deficient in the specific lipoamide dehydrogenase produced during growth on valine (molecular weight, 49,000). Branched-chain keto acid dehydrogenase required L-valine, oxidized nicotinamide adenine dinucleotide, coenzyme A, thiamine pyrophosphate, and magnesium chloride. A partially purified preparation catalyzed the oxidation of 2-keto-[1-14C]isovalerate to [14C]carbon dioxide, isobutyryl-coenzyme A, and reduced nicotinamide adenine dinucleotide in equimolar amounts. Both the Km and the Vmax for 2-ketoisovalerate were affected by the addition of L-valine to the assay mixture. However, only the Vmax values for oxidized nicotinamide adenine dinucleotide and coenzyme A were affected when L-valine was present. This suggested that valine acted by affecting the binding of branched-chain keto acids to subunit E1 of the complex.  相似文献   

11.
12.
Purification of aspartate transcarbamoylase from Pseudomonas syringae   总被引:2,自引:0,他引:2  
Abstract The aspartate transcarbamoylase (ATCase) from Pseudomonas syringae has been purified. The purified enzyme was shown by SDS-PAGE to give two bands. Unambiguous results from N-terminal sequencing suggested that each band represented a homogeneous polypeptide. The M r (relative molecular mass) of the polypeptides was estimated to be 47 kDa and 34 kDa. The M r of the holoenzyme determined by gel filtration and electrophoretic migration in polyacrylamide gradient gels under non-denaturing conditions was estimated at approximately 490 kDa. These findings suggest a subunit structure different from any previously described for a bacterial ATCase.  相似文献   

13.
14.
A novel ethylene-forming enzyme that catalyses the formation of ethylene from 2-oxoglutarate was purified from a cell-free extract of Pseudomonas syringae pv. phaseolicola PK2. It was purified about 2800-fold with an overall yield of 53% to a single band of protein after SDS-PAGE. The purified enzyme had a specific activity of 660 nmol ethylene min-1 (mg protein)-1. The molecular mass of the enzyme was approximately 36 kDa by gel filtration and 42 kDa by SDS-PAGE. The isoelectric point and optimum pH were 5.9 and ca. 7.0-7.5, respectively. There was no homology between the N-terminal amino acid sequence of the ethylene-forming enzyme of Ps. syringae pv. phaseolicola PK2 and the sequence of the ethylene-forming enzyme of the fungus Penicillium digitatum IFO 9372. However, the two enzymes have the following properties in common. The presence of 2-oxoglutarate, L-arginine, Fe2+ and oxygen is essential for the enzymic reaction. The enzymes are highly specific for 2-oxoglutarate as substrate and L-arginine as cofactor. EDTA, Tiron, DTNB [5,5'-dithio-bis(2-nitrobenzoate)] and hydrogen peroxide are all effective inhibitors.  相似文献   

15.
16.
17.
18.
A soluble yellow CO dehydrogenase from CO-autotrophically grown cells of Pseudomonas carboxydohydrogena was purified 35-fold in seven steps to better than 95% homogeneity with a yield of 30%. The final specific activity was 180 μmol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, nicotinamide adenine dinucleotide (phosphate), flavin mononucleotide, and flavin adenine dinucleotide were not reduced by the enzyme, but methylene blue, thionin, and toluylene blue were reduced. The molecular weight of native enzyme was determined to be 4 × 105. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed at least three nonidentical subunits of molecular weights 14,000 (α), 28,000 (β), and 85,000 (γ). The ratio of densities of each subunit after electrophoresis was about 1:2:6 (α/β/γ), suggesting an α3β3γ3 structure for the enzyme. The purified enzyme was free of formate dehydrogenase and nicotinamide adenine dinucleotide-specific hydrogenase activities, but contained particulate hydrogenase-like activity with thionin as electron acceptor. Known metalchelating agents tested had no effect on CO dehydrogenase activity. No divalent cations tested stimulated enzyme activity. The native enzyme does not contain Ni since cells assimilated little 63Ni during growth, and the specific 63Ni content of the enzyme declined during purification. The isoelectric point of the native enzyme was found to be 4.5 to 4.7. The Km for CO was found to be 63 μM. The spectrum of the enzyme and its protein-free extract revealed that it contains bound flavin. The cofactor was flavin adenine dinucleotide based on enzyme digestion and thin-layer chromatography. One mole of native enzyme contains at least 3 mol of noncovalently bound flavin adenine dinucleotide.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号