首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fertile offspring have been produced by nuclear transfer from adult somatic cells in several mammalian species (Wilmut et al., 1997; Kato et al., 1998; Wakayama et al., 1998; Polejaeva et al., 2000; Chesne et al., 2002; Shin et al., 2002; Zhou et al., 2003). Various possible causes have been suggested for the overall low efficiency (Perry and Wakayama, 2002). Notably, however, it has not yet been clearly demonstrated whether reprogramming after nuclear transfer is necessary for successful cloning. Here we show that reprogramming is essential in nuclear transfer, by comparing the developmental efficiency after the transfer of cumulus cell nuclei with that for zygote nuclei. Nuclear transfers from blastomeres of a series of pre-implantation stages showed further that, as development proceeds, the nuclei progressively lose their potency and become more difficult to reprogram upon their transfer into enucleated MII oocytes. We also found that naturally ovulated oocytes are much better recipients of a nucleus than are superovulated oocytes, which have been used in all the nuclear transfer experiments reported so far. This indicates that cloning efficiency can also be increased to some extent by technical improvements. All these results enable us to distinguish more clearly between the inherent problem of reprogramming and technical problems associated with materials, manipulation, and in vitro culture.  相似文献   

2.
Stable isotope ratios in tree-ring cellulose have been shown to be reliable recorders of changes in the ambient climate (Leuenberger et al., 1998). Thus, isotopic fractionations associated with both physical and biochemical processes during cellulose synthesis in higher plants (Epstein & Krishnaumurthy, 1990; Roden et al., 2000; Saurer et al., 1997a; 1997b; 2000) can be used as archives for past climatic indicators. Superimposed on the climatic induced isotopic signal are the long-term responses of plant physiological processes to past changes in environmental conditions including CO2 enrichment.  相似文献   

3.
4.
5.
6.
p21-activated kinase 1 (PAK1) can affect cell migration (Price et al., 1998; del Pozo et al., 2000) and modulate myosin light chain kinase and LIM kinase, which are components of the cellular motility machinery (Edwards, D.C., L.C. Sanders, G.M. Bokoch, and G.N. Gill. 1999. Nature Cell Biol. 1:253-259; Sanders, L.C., F. Matsumura, G.M. Bokoch, and P. de Lanerolle. 1999. SCIENCE: 283:2083-2085). We here present a novel cell motility pathway by demonstrating that PAK4 directly interacts with an integrin intracellular domain and regulates carcinoma cell motility in an integrin-specific manner. Yeast two-hybrid screening identified PAK4 binding to the cytoplasmic domain of the integrin beta 5 subunit, an association that was also found in mammalian cells between endogenous PAK4 and integrin alpha v beta 5. Furthermore, we mapped the PAK4 binding to the membrane-proximal region of integrin beta 5, and identified an integrin-binding domain at aa 505-530 in the COOH terminus of PAK4. Importantly, engagement of integrin alpha v beta 5 by cell attachment to vitronectin led to a redistribution of PAK4 from the cytosol to dynamic lamellipodial structures where PAK4 colocalized with integrin alpha v beta 5. Functionally, PAK4 induced integrin alpha v beta 5-mediated, but not beta1-mediated, human breast carcinoma cell migration, while no changes in integrin cell surface expression levels were observed. In conclusion, our results demonstrate that PAK4 interacts with integrin alpha v beta 5 and selectively promotes integrin alpha v beta 5-mediated cell migration.  相似文献   

7.
Autophagy is inhibited by the insulin-amino acid-mTOR signaling pathway. Two papers in this issue of Cell Metabolism (Ebato et al., 2008; Jung et al., 2008) provide evidence that basal autophagy is necessary to maintain the architecture and function of pancreatic beta cells and that its induction in diabetic mice protects beta cells against damage by oxidative stress.  相似文献   

8.
Böhmer C  Wehner F 《FEBS letters》2001,494(1-2):125-128
The epithelial Na(+) channel (ENaC) is composed of the subunits alpha, beta, and gamma [Canessa et al., Nature 367 (1994) 463-467] and typically exhibits a high affinity to amiloride [Canessa et al., Nature 361 (1993) 467-470]. When expressed in Xenopus oocytes, conflicting results were reported concerning the osmo-sensitivity of the channel [Ji et al., Am. J. Physiol. 275 (1998) C1182-C1190; Hawayda and Subramanyam, J. Gen. Physiol. 112 (1998) 97-111; Rossier, J. Gen. Physiol. 112 (1998) 95-96]. Rat hepatocytes were the first system in which amiloride-sensitive sodium currents in response to hypertonic stress were reported [Wehner et al., J. Gen. Physiol. 105 (1995) 507-535; Wehner et al., Physiologist 40 (1997) A-4]. Moreover, all three ENaC subunits are expressed in these cells [B?hmer et al., Cell. Physiol. Biochem. 10 (2000) 187-194]. Here, we injected specific antisense oligonucleotides directed against alpha-rENaC into single rat hepatocytes in confluent primary culture and found an inhibition of hypertonicity-induced Na(+) currents by 70%. This is the first direct evidence for a role of the ENaC in cell volume regulation.  相似文献   

9.
Acute liver toxicity is a frequent adverse event that occurs during antiretroviral therapy and was observed in 6-30% of the patients on treatment, especially in presence of HCV coinfection (Cooper et al., 2002, Maida et al., 2006, Sulkowski et al., 2000). A correlation between HCV-associated liver-fibrosis severity and the risk of HAART associated hepatoxicity has been demonstrated (Aranzabal et al., 2005, Sulkowski et al., 2004). This high liver toxicity rate might be due to increased drug exposure in patients with liver disease (Veronese et al., 2000). It has been reported that patients with chronic hepatitis C show significantly reduced CPY3A4 and CYP2D6 activity in comparison with healthy volunteers (Becquemont et al., 2002). The aim of this study was to evaluate the liver function tests in HCV-co-infected patients treated with fos-amprenavir and ritonavir.  相似文献   

10.
中国新近系山旺阶建阶研究新进展   总被引:11,自引:3,他引:8  
中国新近系的年代地层单位山旺阶与哺乳动物分期的山旺期相对应 ,其定义的生物带相当于欧洲的MN3~MN5 ,下界年龄应为 2 0 .5Ma。按照现代地层学的建阶原则对山东临朐的山旺剖面进行综合研究 ,得出山旺组的底界年龄约为 1 8Ma ,山旺动物群的地质时代也由原来认为的与欧洲MN5相当提早到与MN4相当。尽管如此 ,研究结果证实山旺组仍然缺失定义的山旺阶下部沉积和MN3动物群。《国际地层指南》提倡将重点放在选择下界的界线层型来确定年代地层单位 ,其上界应该由后续单位的下界来确定。甘肃兰州盆地和秦安地区有发育的渐新世至中新世沉积出露 ,并有山旺阶最底部的化石和适合于作古地磁分析的沉积物 ,因此 ,是有可能建立山旺阶下界界线层型的有利地点。  相似文献   

11.
Insulin secretion: SIRT4 gets in on the act   总被引:1,自引:0,他引:1  
Argmann C  Auwerx J 《Cell》2006,126(5):837-839
  相似文献   

12.
Intermediary metabolism of tumors is characterized, in part, by a dysregulation of the cholesterol biosynthesis pathway at its rate-controlling enzyme providing the molecular basis for tumor membranes (mitochondria, plasma membrane) to become enriched with cholesterol (Bloch, 1965; Feo et al., 1975; Brown and Goldstein, 1980; Goldstein and Brown, 1990). Cholesterol enriched tumor mitochondria manifest preferential citrate export, thereby providing a continuous supply of substrate precursor for the tumor’s dysregulated cholesterogenesis via a “truncated” Krebs/TCA cycle (Kaplan et al., 1986; Coleman et al., 1997). Proliferating tumors shed elevated amounts of plasma membrane-derived extracellular vesicles (pmEV) compared with normal tissues (van Blitterswijk et al., 1979; Black, 1980). Coordination of these metabolic phenomena in tumors supports the enhanced intercalation of cholesterol within the plasma membrane lipid bilayer’s cytoplasmic face, the promotion of outward protrusions from the plasma membrane, and the evolution of cholesterol enriched pmEV. The pmEV shed by tumors possess elevated cholesterol and concentrated cell surface antigen clusters found on the tumor cells themselves (Kim et al., 2002). Upon exfoliation, saturation of the extracellular milieu with tumor-derived pmEV could allow early onset mammalian immune surveillance mechanisms to become “blind” to an evolving cancer and lose their ability to detect and initiate strategies to destroy the cancer. However, a molecular mechanism is lacking that would help explain how cholesterol enrichment of the pmEV inner lipid bilayer might allow the tumor cell to evade the host immune system. We offer a hypothesis, endorsed by published mathematical modeling of biomembrane structure as well as by decades of in vivo data with diverse cancers, that a cholesterol enriched inner bilayer leaflet, coupled with a logarithmic expansion in surface area of shed tumor pmEV load relative to its derivative cancer cell, conspire to force exposure of otherwise unfamiliar membrane integral protein domains as antigenic epitopes to the host’s circulating immune surveillance system, allowing the tumor cells to evade destruction. We provide elementary numerical estimations comparing the amount of pmEV shed from tumor versus normal cells.  相似文献   

13.
14.
Endogenous rhythmicity likely evolved as a mechanism allowing organisms to anticipate predictable daily changes in the environment (Rutter et al., 2002). Under homeostasis, murine hematopoietic stem cell (HSC) egress is orchestrated by rhythmic beta 3 adrenergic signals delivered by the sympathetic nervous system (SNS) that regulate Cxcl12 expression in stromal cells (Mendez-Ferrer et al., 2008). Here, we show that CXCR4 is also regulated under circadian control whose rhythm is synchronized with its ligand, CXCL12, to optimize HSC trafficking. These circadian oscillations are inverted in humans compared to the mouse and continue to influence the yield even when stem cell mobilization is enforced. Our results suggest that the human HSC yield for clinical transplantation might be significantly greater if patients were harvested during the evening compared to the morning.  相似文献   

15.
Pax2 is essential for the development of the urogenital system, neural tube, otic vesicle, optic cup and optic tract [Dressler, G.R., Deutsch, U., et al., 1990. PAX2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109 (4), 787-795; Nornes, H.O., Dressler, G.R., et al., 1990. Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109 (4), 797-809; Eccles, M.R., Wallis, L.J., et al., 1992. Expression of the PAX2 gene in human fetal kidney and Wilms’ tumor. Cell Growth Differ 3 (5), 279-289]. Within the visual system, a loss-of-function leads to lack of choroid fissure closure (known as a coloboma), a loss of optic nerve astrocytes, and anomalous axonal pathfinding at the optic chiasm [Favor, J., Sandulache, R., et al., 1996. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc. Natl. Acad. Sci. U. S. A. 93 (24), 13870-13875; Torres, M., Gomez-Pardo, E., et al., 1996. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122 (11), 3381-3391]. This study is directed at determining the effects of ectopic Pax2 expression in the chick ventral optic cup past the normal developmental period when Pax2 is found. In ovo electroporation of Pax2 into the chick ventral optic cup results in the formation of colobomas, a condition typically associated with a loss of Pax2 expression. While the overexpression of Pax2 appears to phenocopy a loss of Pax2, the mechanism of the failure of choroid fissure closure is associated with a cell fate switch from ventral retina and retinal pigmented epithelium (RPE) to an astrocyte fate. Further, ectopic expression of Pax2 in RPE appears to have non-cell autonomous effects on adjacent RPE, creating an ectopic neural retina in place of the RPE.  相似文献   

16.
Integrin-extracellular matrix (ECM) interactions in two-dimensional (2D) culture systems are widely studied (Goldstein and DiMilla, 2002. J Biomed. Mater. Res. 59, 665-675; Koo et al., 2002. J. Cell Sci. 115, 1423-1433). Less understood is the role of the ECM in promoting intercellular cohesion in three-dimensional (3D) environments. We have demonstrated that the alpha5beta1-integrin mediates strong intercellular cohesion of 3D cellular aggregates (Robinson et al., 2003. J. Cell Sci. 116, 377-386). To further investigate the mechanism of alpha5beta1-mediated cohesivity, we used a series of chimeric alpha5beta1-integrin-expressing cells cultured as multilayer cellular aggregates. In these cell lines, the alpha5 subunit cytoplasmic domain distal to the GFFKR sequence was truncated, replaced with that of the integrin alpha4, the integrin alpha2, or maintained intact. Using these cells, alpha5beta1-integrin-mediated cell aggregation, compaction and cohesion were determined and correlated with FN matrix assembly. The data presented demonstrate that cells cultured in the absence of external mechanical support can assemble a FN matrix that promotes integrin-mediated aggregate compaction and cohesion. Further, inhibition of FN matrix assembly blocks the intercellular associations required for compaction, resulting in cell dispersal. These results demonstrate that FN matrix assembly contributes significantly to tissue cohesion and represents an alternative mechanism for regulating tissue architecture.  相似文献   

17.
18.
19.
20.
Biogeochemistry is the study of how living systems in combination with abiotic reactions process and cycle mass and energy on local, regional, and global scales (Schlesinger, 1997). Understanding how these biogeochemical cycles function and respond to perturbations has become increasingly important, as anthropogenic impacts have significantly altered many of these cycles (Galloway and Cowling, 2002; Houghton et al., 2002). Biogeochemistry is strongly governed by microbial processes, and it appears to closely follow thermodynamic constraints in that electron acceptor (O(2), NO(3)(-), SO(4)(2-), etc.) utilization closely follows a priori expectations based on energetics (Vallino et al., 1996; Hoehler et al., 1998; Jakobsen and Postma, 1999; Amend and Shock, 2001). Consortiums of microorganisms seem to have evolved to exploit chemical potentials wherever they exist in the environment, as manifested by the recent discovery of anaerobic methane oxidation by sulfate (Boetius et al., 2000) or sulfide oxidation by nitrate (Schulz et al., 1999). Three and a half billion years of natural selection have produced living systems capable of degrading most chemical potentials. We may therefore ask: If all ecosystem niche space is filled, is the biogeochemistry we observe in the environment dependent on the organisms that occupy that environment, or is the biogeochemistry determined by fundamental forces, with the evolution of living systems being the implementation of those forces? Recent developments in nonequilibrium thermodynamics (NET) are beginning to support the latter alternative, and advances in genomics are allowing us to explore microbial consortiums in detail. Taking advantage of ideas being suggested by NET, we have developed a modeling framework that views microbial consortiums as an inter-species distributed metabolic network. When combined with experimental observations, the model should help us test hypotheses that govern how living systems function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号