共查询到20条相似文献,搜索用时 0 毫秒
1.
Vasodilatory mechanisms in contracting skeletal muscle. 总被引:11,自引:0,他引:11
Skeletal muscle blood flow is closely coupled to metabolic demand, and its regulation is believed to be mainly the result of the interplay of neural vasoconstrictor activity and locally derived vasoactive substances. Muscle blood flow is increased within the first second after a single contraction and stabilizes within approximately 30 s during dynamic exercise under normal conditions. Vasodilator substances may be released from contracting skeletal muscle, vascular endothelium, or red blood cells. The importance of specific vasodilators is likely to vary over the time course of flow, from the initial rapid rise to the sustained elevation during steady-state exercise. Exercise hyperemia is therefore thought to be the result of an integrated response of more than one vasodilator mechanism. To date, the identity of vasoactive substances involved in the regulation of exercise hyperemia remains uncertain. Numerous vasodilators such as adenosine, ATP, potassium, hypoxia, hydrogen ion, nitric oxide, prostanoids, and endothelium-derived hyperpolarizing factor have been proposed to be of importance; however, there is little support for any single vasodilator being essential for exercise hyperemia. Because elevated blood flow cannot be explained by the failure of any single vasodilator, a consensus is beginning to emerge for redundancy among vasodilators, where one vasoactive compound may take over when the formation of another is compromised. Conducted vasodilation or flow-mediated vasodilation may explain dilation in vessels (i.e., feed arteries) not directly exposed to vasodilator substances in the interstitium. Future investigations should focus on identifying novel vasodilators and the interaction between vasodilators by simultaneous inhibition of multiple vasodilator pathways. 相似文献
2.
Finite element modelling of contracting skeletal muscle 总被引:2,自引:0,他引:2
Oomens CW Maenhout M van Oijen CH Drost MR Baaijens FP 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2003,358(1437):1453-1460
To describe the mechanical behaviour of biological tissues and transport processes in biological tissues, conservation laws such as conservation of mass, momentum and energy play a central role. Mathematically these are cast into the form of partial differential equations. Because of nonlinear material behaviour, inhomogeneous properties and usually a complex geometry, it is impossible to find closed-form analytical solutions for these sets of equations. The objective of the finite element method is to find approximate solutions for these problems. The concepts of the finite element method are explained on a finite element continuum model of skeletal muscle. In this case, the momentum equations have to be solved with an extra constraint, because the material behaves as nearly incompressible. The material behaviour consists of a highly nonlinear passive part and an active part. The latter is described with a two-state Huxley model. This means that an extra nonlinear partial differential equation has to be solved. The problems and solutions involved with this procedure are explained. The model is used to describe the mechanical behaviour of a tibialis anterior of a rat. The results have been compared with experimentally determined strains at the surface of the muscle. Qualitatively there is good agreement between measured and calculated strains, but the measured strains were higher. 相似文献
3.
Rotation of the lever arm of Myosin in contracting skeletal muscle fiber measured by two-photon anisotropy
下载免费PDF全文

The rotation of the lever arm of myosin cross-bridges is believed to be responsible for muscle contraction. To resolve details of this rotation, it is necessary to observe a single cross-bridge. It is still impossible to do so in muscle fiber, but it is possible to investigate a small population of cross-bridges by simultaneously activating myosin in a femtoliter volume by rapid release of caged ATP. In earlier work, in which the number of observed cross-bridges was limited to approximately 600 by confocal microscopy, we were able to measure the rates of cross-bridge detachment and rebinding. However, we were unable to resolve the power stroke. We speculated that the reason for this was that the number of observed cross-bridges was too large. In an attempt to decrease this number, we used two-photon microscopy which permitted observation of approximately 1/2 as many cross-bridges as before with the same signal/noise ratio. With the two-photon excitation, the number of cross-bridges was small enough to resolve the beginning of the power stroke. The results indicated that the power stroke begins approximately 170 ms after the rigor cross-bridge first binds ATP. 相似文献
4.
《The Journal of general physiology》1982,79(1):1-19
The junction between the T system and sarcoplasmic reticulum (SR) of frog skeletal muscle was examined in resting and contracting muscles. Pillars, defined as pairs of electron-opaque lines bounding an electron- lucent interior, were seen spanning the gap between T membrane and SR. Feet, defined previously in images of heavily stained preparations, appear with electron-opaque interiors and as such are distinct from the pillars studied here. Amorphous material was often present in the gap between T membrane and SR. Sometimes the amorphous material appeared as a thin line parallel to the membranes; sometimes it seemed loosely organized at the sites where feet have been reported. Resting single fibers contained 39 +/- 14.3 (mean +/- SD; n = 9 fibers) pillars/micrometer2 of tubule membrane. Single fibers, activated by a potassium-rich solution at 4 degrees C, contained 66 +/- 12.9 pillars/micrometer2 (n = 8) but fibers contracting in response to 2 mM caffeine contained 33 +/- 8.6/micrometer2 (n = 5). Pillar formation occurs when fibers are activated electrically, but not when calcium is released directly from the SR; and so we postulate that pillar formation is a step in excitation-contraction coupling. 相似文献
5.
K Sahlin 《Biochemical Society transactions》1991,19(2):353-358
6.
Kraft T Mattei T Radocaj A Piep B Nocula C Furch M Brenner B 《Biophysical journal》2002,82(5):2536-2547
Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge. 相似文献
7.
The measurements of total body potassium (TBK) and calcium (TBCa) were made on 317 subjects by the techniques of whole-body counting and total-body neutron activation analysis (TBNAA), respectively. The TBK/TBCa ratios are constant for normals over the age range studied. The males have more cellular mass (TBK) per unit skeletal mass (TBCa) than the females, as indicated by their respective TBK/TBCa ratios, 0.122 +/- 0.008 (1 SD), and 0.100 +/- 0.007 (1 SD). In general, patients with various metabolic disorders tend to follow the physiological trend found in the normals. In a number of metabolic disorders, the loss of TBK was usually approximately 60% of that of the TBCa when expressed in terms of the predicted normal values. This suggests that the mechanism causing the loss of calcium in physiological and altered metabolic states simultaneously involves both the skeleton and its associated musculature. 相似文献
8.
A gap isolation method to investigate electrical and mechanical properties of fully contracting skeletal muscle fibers. 总被引:1,自引:0,他引:1
下载免费PDF全文

In the green alga Chlamydomonas chlamyrhodopsin fulfills its role as a light sensor by absorbing light and activating photoreceptor channels within the eyespot area. At intense light stimuli, the photoreceptor (P) current triggers a fast and a slow flagellar current that finally leads to backward swimming (stop response). Here we report about probing the photoreceptor current directly at the eyespot. This allows the detection of the whole P current with a size of above 50 pA. The P current appears with a delay of less than 50 microseconds, suggesting that rhodopsin and the P channel are closely coupled or form one ion channel complex. The Ca2+ dependence of the P current has been demonstrated with the established suction technique in a capacitive mode. The P current shows the maximum amplitude at only 300 nM Ca2+, and it gradually declines at higher Ca2+. In addition to Ca2+, the photoreceptor and the fast flagellar current can be carried by Sr2+ and Ba2+. Mg2+ is conducted less efficiently and at high concentrations blocks the photoreceptor channel. A motion analysis of the cells shows that only Ca2+ and Sr2+ can induce physiological stop responses, whereas the large Ba2+ currents cause abnormal long-lasting cell spiraling. 相似文献
9.
X-ray study of myosin heads in contracting frog skeletal muscle 总被引:5,自引:0,他引:5
Using synchrotron radiation, the behaviour of the diffuse X-ray scatter was investigated in the relaxed and active phases of auxotonic and isometric contractions. Muscles were stimulated tetanically for 0.75 of a second, leaving intervals of three minutes between successive contractions. In isometric contractions the scatter is very asymmetric, which means that the myosin heads have a strongly preferred orientation. During tension rise the scatter expands in the meridional direction and contracts in the equatorial direction, the maximal local intensity change being about 20%. The shape change indicates that on average the myosin heads become oriented more perpendicularly to the fibre axis. The distribution of orientations at peak tension is quite different from that we found previously in X-ray scattering data from rigor muscles. In auxotonic contractions where muscles shorten against an increasing tension the scatter is practically circularly symmetrical. This suggests that during shortening the myosin heads go evenly through a wide range of orientations. It is concluded that the results from both the auxotonic and isometric experiments provide strong support for the rotating myosin head model. In isometric contractions the transition between the relaxed phase and peak tension is accompanied by an overall increase in scattering intensity of about 10%: this corresponds to a relative increase in the fraction of disordered myosin heads by almost 30%. 相似文献
10.
Stary CM Hogan MC 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,278(3):R587-R591
To investigate the differential contribution of oxidative and substrate-level phosphorylation to force production during repetitive, maximal tetanic contractions, single skeletal muscle fiber performance was examined under conditions of high-oxygen availability and anoxia. Tetanic force development (P) was measured in isolated, single type-1 muscle fibers (fast twitch; n = 6) dissected from Xenopus lumbrical muscle while being stimulated at increasing frequencies (0.25, 0.33, and 0.5 Hz), with each frequency lasting 2 min. Two separate work bouts were conducted, with the perfusate PO(2) being either 0 or 159 mmHg. No significant (P < 0. 05) difference was found in the initial peak tensions (P(0)) between the high (334 +/- 57 kPa) and the low (325 +/- 41 kPa) PO(2) treatment. No significant difference in P was observed between the treatments during the first 50 s. However, a significant difference in force production was observed between the high (P/P(0) = 0.96 +/- 0.02) and the low PO(2) condition (P/P(0) = 0.92 +/- 0.02) by 60 s of work. After 60 s, steady-state force production was maintained during the high compared with the low PO(2) condition until stimulation frequency was increased, at which point developed tension during the high PO(2) condition began to decline. Time to fatigue (P/P(0) = 0.3) was reached significantly sooner during the low (250 +/- 16 s) than the high PO(2) condition (367 +/- 28 s). These results demonstrate that during the first 50 s of 0.25-Hz contractions, substrate-level phosphorylation has the capacity to maintain force and ATP hydrolysis when oxidative phosphorylation is absent. This period was followed by an oxygen-dependent phase in which force generation was maintained during the high PO(2) condition (but not during the low PO(2) condition) until the onset of a final fatiguing phase, at which a calculated maximal rate of oxidative phosphorylation was reached. 相似文献
11.
Force depression following muscle shortening was investigated in cat soleus (n=6) at 37 degrees C for a variety of contractile conditions with the aim to test the hypotheses that force depression was independent of the speed of shortening and was directly related to the mechanical work produced by the muscle during shortening. Force depression was similar for tests in which the mechanical work performed by the muscle was similar, independent of the speed of shortening (range of speeds: 4-256mm/s). On the other hand, force depression varied significantly at a given speed of shortening but different amounts of mechanical work, supporting the hypothesis that force depression was not speed - but work dependent. The variations in the mechanical work produced by the muscle during shortening accounted for 87-96% of the variance observed in the force depression following shortening further supporting the idea that the single scalar variable work accounts for most of the observed loss in isometric force after shortening. The results of the present study are also in agreement with the notion that the mechanism underlying force depression might be associated with an inhibition of cross-bridge attachments in the overlap zone formed during the shortening phase, as proposed previously (Herzog and Leonard, 1997. Journal of Bimechanics 30 (9), 865-872; Maréchal and Plaghki, 1979. 相似文献
12.
Watt MJ Krustrup P Secher NH Saltin B Pedersen BK Febbraio MA 《American journal of physiology. Endocrinology and metabolism》2004,286(1):E144-E150
To examine the effect of attenuated epinephrine and elevated insulin on intramuscular hormone sensitivity lipase activity (HSLa) during exercise, seven men performed 120 min of semirecumbent cycling (60% peak pulmonary oxygen uptake) on two occasions while ingesting either 250 ml of a 6.4% carbohydrate (GLU) or sweet placebo (CON) beverage at the onset of, and at 15 min intervals throughout, exercise. Muscle biopsies obtained before and immediately after exercise were analyzed for HSLa. Blood samples were simultaneously obtained from a brachial artery and a femoral vein before and during exercise, and leg blood flow was measured by thermodilution in the femoral vein. Net leg glycerol and lactate release and net leg glucose and free fatty acid (FFA) uptake were calculated from these measures. Insulin and epinephrine were also measured in arterial blood before and throughout exercise. During GLU, insulin was elevated (120 min: CON, 11.4 +/- 2.4, GLU, 35.3 +/- 6.9 pM, P < 0.05) and epinephrine suppressed (120 min: CON, 6.1 +/- 2.5, GLU, 2.1 +/- 0.9 nM; P < 0.05) compared with CON. Carbohydrate feeding also resulted in suppressed (P < 0.05) HSLa relative to CON (120 min: CON, 1.71 +/- 0.18, GLU, 1.27 +/- 0.16 mmol.min-1.kg dry mass-1). There were no differences in leg lactate or glycerol release when trials were compared, but leg FFA uptake was lower (120 min: CON, 0.29 +/- 0.06, GLU, 0.82 +/- 0.09 mmol/min) and leg glucose uptake higher (120 min: CON, 3.16 +/- 0.59, GLU, 1.37 +/- 0.37 mmol/min) in GLU compared with CON. These results demonstrate that circulating insulin and epinephrine play a role in HSLa in contracting skeletal muscle. 相似文献
13.
A direct modeling approach was used to quantitatively interpret the two-dimensional x-ray diffraction patterns obtained from contracting mammalian skeletal muscle. The dependence of the calculated layer line intensities on the number of myosin heads bound to the thin filaments, on the conformation of these heads and on their mode of attachment to actin, was studied systematically. Results of modeling are compared to experimental data collected from permeabilized fibers from rabbit skeletal muscle contracting at 5°C and 30°C and developing low and high isometric tension, respectively. The results of the modeling show that: i), the intensity of the first actin layer line is independent of the tilt of the light chain domains of myosin heads and can be used as a measure of the fraction of myosin heads stereospecifically attached to actin; ii), during isometric contraction at near physiological temperature, the fraction of these heads is ∼40% and the light chain domains of the majority of them are more perpendicular to the filament axis than in rigor; and iii), at low temperature, when isometric tension is low, a majority of the attached myosin heads are bound to actin nonstereospecifically whereas at high temperature and tension they are bound stereospecifically. 相似文献
14.
J P Idstr?m V H Subramanian B Chance T Scherstén A C Bylund-Fellenius 《Federation proceedings》1986,45(13):2937-2941
The regulation of the energy metabolism in contracting skeletal muscle is under close control, and several regulating factors have been reported. The aim of this study was to investigate the importance of the oxygen supply as a limiting factor for muscle performance during contractions and recovery from contractions. To perform well-controlled standardized experiments on contracting skeletal muscle, the perfused rat hind limb model was developed. The 31P NMR technique was adapted to the rat hind limb model. This enabled continuous nondestructive monitoring of the energy state at various levels of muscular activity. Significant correlations were found between oxygen delivery and oxygen consumption, lactate release, and glucose uptake, respectively. An increased degree of fatigue was observed at lower oxygen deliveries. In both soleus and gastrocnemius muscles, oxygen delivery correlated with the intramuscular concentrations of phosphocreatine (PCr), lactate, and glycogen. The 31P NMR experiments showed a correlation between oxygen delivery and the steady-state level of PCr/inorganic phosphate (Pi) during the contraction period. The rate of recovery in PCr/Pi after the contraction was also dependent on oxygen delivery. The results demonstrate a causal relationship between oxygen supply and energy state in contracting as well as recovering skeletal muscles. 相似文献
15.
Dinenno FA Joyner MJ 《American journal of physiology. Heart and circulatory physiology》2004,287(6):H2576-H2584
Sympathetic alpha-adrenergic vasoconstrictor responses are blunted in the vascular beds of contracting muscle (functional sympatholysis). We tested the hypothesis that combined inhibition of nitric oxide (NO) and prostaglandins (PGs) restores sympathetic vasoconstriction in contracting human muscle. We measured forearm blood flow via Doppler ultrasound and calculated the reduction in forearm vascular conductance in response to alpha-adrenergic receptor stimulation during rhythmic handgrip exercise (6.4 kg) and during a control nonexercise vasodilator condition (using intra-arterial adenosine) before and after combined local inhibition of NO synthase (NOS; via N(G)-nitro-L-arginine methyl ester) and cyclooxygenase (via ketorolac) in healthy men. Before combined inhibition of NO and PGs, the forearm vasoconstrictor responses to intra-arterial tyramine (which evoked endogenous noradrenaline release), phenylephrine (a selective alpha1-agonist), and clonidine (an alpha2-agonist) were significantly blunted during exercise compared with adenosine treatment. After combined inhibition of NO and PGs, the vasoconstrictor responses to all alpha-adrenergic receptor stimuli were augmented by approximately 10% in contracting muscle (P <0.05), whereas the responses to phenylephrine and clonidine were also augmented by approximately 10% during passive vasodilation in resting muscle (P <0.05). In six additional subjects, PG inhibition alone did not alter the vasoconstrictor responses in resting or contracting muscles. Thus in light of our previous findings, it appears that inhibition of either NO or PGs alone does not affect functional sympatholysis in healthy humans. However, the results from the present study indicate that combined inhibition of NO and PGs augments alpha-adrenergic vasoconstriction in contracting muscle but does not completely restore the vasoconstrictor responses compared with those observed during passive vasodilation in resting muscle. 相似文献
16.
Zoghbi ME Bolaños P Villalba-Galea C Marcano A Hernández E Fill M Escobar AL 《Biophysical journal》2000,78(1):164-173
The spatiotemporal distribution of intracellular Ca(2+) release in contracting skeletal and cardiac muscle cells was defined using a snapshot imaging technique. Calcium imaging was performed on intact skeletal and cardiac muscle cells during contractions induced by an action potential (AP). The sarcomere length of the skeletal and cardiac cells was approximately 2 micrometer. Imaging Rhod-2 fluorescence only during a very brief (7 ns) snapshot of excitation light minimized potential image-blurring artifacts due to movement and/or diffusion. In skeletal muscle cells, the AP triggered a large fast Ca(2+) transient that peaked in less than 3 ms. Distinct subsarcomeric Ca(2+) gradients were evident during the first 4 ms of the skeletal Ca(2+) transient. In cardiac muscle, the AP-triggered Ca(2+) transient was much slower and peaked in approximately 100 ms. In contrast to the skeletal case, there were no detectable subsarcomeric Ca(2+) gradients during the cardiac Ca(2+) transient. Theoretical simulations suggest that the subsarcomeric Ca(2+) gradients seen in skeletal muscle were detectable because of the high speed and synchrony of local Ca(2+) release. Slower asynchronous recruitment of local Ca(2+) release units may account for the absence of detectable subsarcomeric Ca(2+) gradients in cardiac muscle. The speed and synchrony of local Ca(2+) gradients are quite different in AP-activated contracting cardiac and skeletal muscle cells at normal resting sarcomere lengths. 相似文献
17.
18.
Pattwell DM Patwell DM McArdle A Morgan JE Patridge TA Jackson MJ 《Free radical biology & medicine》2004,37(7):1064-1072
A number of studies have indicated that exercise is associated with an increased oxidative stress in skeletal muscle tissue, but the nature of the increased oxidants and sites of their generation have not been clarified. The generation of extracellular reactive oxygen and nitrogen species has been studied in myotubes derived from an immortalized muscle cell line (H-2k(b) cells) that were stimulated to contract by electrical stimulation in culture. Cells were stimulated to contract with differing frequencies of electrical stimulation. Both induced release of superoxide anion and nitric oxide into the extracellular medium and caused an increase in extracellular hydroxyl radical activity. Increasing frequency of stimulation increased the nitric oxide generation and hydroxyl radical activity, but had no significant effect on the superoxide released. Additions of inhibitors of putative generating pathways indicated that contraction-induced NO release was primarily from neuronal NO synthase enzymes and that the superoxide released is likely to be generated by a plasma membrane-located, flavoprotein oxidoreductase system. The data also indicate that peroxynitrite is generated in the extracellular fluid of muscle during contractile activity. 相似文献
19.
Arsac LM Beuste C Miraux S Deschodt-Arsac V Thiaudiere E Franconi JM Diolez PH 《The Biochemical journal》2008,414(3):391-397
We used (31)P MRS (magnetic resonance spectroscopy) measurements of energetic intermediates [ATP, P(i) and PCr (phosphocreatine)] in combination with the analytical tools of metabolic control analysis to study in vivo energy metabolism in the contracting skeletal muscle of anaesthetized rats over a broad range of workload. According to our recent MoCA (modular control analysis) used to describe regulatory mechanisms in beating heart, we defined the energetic system of muscle contraction as two modules (PCr-Producer and PCr-Consumer) connected by the energetic intermediates. Hypoxia and electrical stimulation were used in this in vivo study as reasonably selective modulations of Producer and Consumer respectively. As quantified by elasticity coefficients, the sensitivities of each module to PCr determine the control of steady-state contractile activity and metabolite concentrations. The magnitude of the elasticity of the producer was high (4.3+/-0.6) at low workloads and decreased 5-fold (to 0.9+/-0.2) at high workloads. By contrast, the elasticity of the consumer remained low (0.5-1.2) over the range of metabolic rates studied. The control exerted by each module over contraction was calculated from these elasticities. The control of contraction was found on the consumer at low workloads and then swung to the producer, due to the workload-dependent decrease in the elasticity of producer. The workload-dependent elasticity and control pattern of energy production in muscle is a major difference from heart. Since module rate and elasticity depend on the concentrations of substrates and products, the absence of homoeostasis of the energetic intermediates in muscle, by contrast with heart, is probably the origin of the workload-dependent elasticity of the producer module. 相似文献