首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge. The immunogenicity in this model was comparable to that of a whole virus H5N1 vaccine, which had previously been demonstrated to induce high levels of seroprotection in clinical studies. The efficacy of the H1N1 pandemic vaccine in protecting against live virus challenge was also seen to be equivalent to that of the H5N1 vaccine. The protective efficacy of the H1N1 vaccine was also confirmed using a severe combined immunodeficient (SCID) mouse model. It was demonstrated that mouse and guinea pig immune sera elicited following active H1N1 vaccination resulted in 100% protection of SCID mice following passive transfer of immune sera and lethal challenge. The immune responses to a whole virus pandemic H1N1 and a split seasonal H1N1 vaccine were also compared in this study. It was demonstrated that the whole virus vaccine induced a balanced Th-1 and Th-2 response in mice, whereas the split vaccine induced mainly a Th-2 response and only minimal levels of Th-1 responses. These data supported the initiation of clinical studies with the same low doses of whole virus vaccine that had previously been demonstrated to be immunogenic in clinical studies with a whole virus H5N1 vaccine.  相似文献   

2.
The gene MTDH/AEG-1 is overexpressed in more than 40% of breast cancer patients, and it is associated with poor clinical outcomes. Previous studies have indicated that MTDH/AEG-1 could promote metastatic lung-seeding and enhance chemoresistance. Therefore, MTDH/AEG-1 could be a candidate target against breast cancer lung metastasis. We demonstrated that MTDH/AEG-1-based DNA vaccine, delivered by attenuated Salmonella typhimurium, could evoke strong CD8+ cytotoxic-T-cell mediated immune responses against breast cancer. This vaccine showed anti-tumor growth and metastasis efficacy in a prophylactic setting. Importantly, in a therapeutic model, MTDH/AEG-1 vaccine was proved to increase chemosensitivity to doxorubicin and inhibit breast cancer lung metastasis. This vaccine could also prolong the life span of tumor-bearing mice without significant side effects in vivo. These results suggested that this novel DNA vaccine was effective in the inhibition of breast cancer growth and metastasis, and this vaccine in combination with chemotherapies offered new strategies for the clinical therapeutics of breast cancer metastasis.  相似文献   

3.
An objective of preventive HIV vaccine efficacy trials is to understand how vaccine-induced immune responses to specific protein sequences of HIV-1 associate with subsequent infection with specific sequences of HIV, where the immune response biomarkers are measured in vaccine recipients via a two-phase sampling design. Motivated by this objective, we investigate the stratified mark-specific proportional hazards model under two-phase biomarker sampling, where the mark is the genetic distance of an infecting HIV-1 sequence to an HIV-1 sequence represented inside the vaccine. Estimation and inference procedures based on inverse probability weighting of complete-cases and on augmented inverse probability weighting of complete-cases are developed. Asymptotic properties of the estimators are derived and their finite-sample performances are examined in simulation studies. The methods are shown to have satisfactory performance and are applied to the RV144 vaccine trial to assess whether immune response correlates of HIV-1 infection are stronger for HIV-1 infecting sequences similar to the vaccine than for sequences distant from the vaccine.  相似文献   

4.
We consider the impact of a vaccination programme on the transmission potential of the infection in large populations. We define a measure of vaccine efficacy against transmission which combines the possibly random effect of the vaccine on individual susceptibility and infectiousness. This definition extends some previous work in this area to arbitrarily heterogeneous populations with one level of mixing, but leads us to question the usefulness of the concept of vaccine efficacy against infectiousness. We derive relationships between vaccine efficacy against transmission, vaccine coverage and reproduction numbers, which generalize existing results. In particular we show that the projected reproduction number RV does not depend on the details of the vaccine model, only on its overall effect on transmission. Explicit expressions for RV and the basic reproduction number R0 are obtained in a variety of settings. We define a measure of projected effectiveness of a vaccination programme PE=1-(RV/R0) and investigate its relationship with efficacy against transmission and vaccine coverage. We also study the effective reproduction number Re(t) at time t. Monitoring Re(t) over time is an important aspect of programme surveillance. Programme effectiveness PE is less sensitive than RV or the critical vaccination threshold to model assumptions. On the other hand Re(t) depends on the details of the vaccine model.  相似文献   

5.
Shata MT  Hone DM 《Journal of virology》2001,75(20):9665-9670
A prototype Shigella human immunodeficiency virus type 1 (HIV-1) gp120 DNA vaccine vector was constructed and evaluated for immunogenicity in a murine model. For comparative purposes, mice were also vaccinated with a vaccinia virus-env (vaccinia-env) vector or the gp120 DNA vaccine alone. Enumeration of the CD8(+)-T-cell responses to gp120 after vaccination using a gamma interferon enzyme-linked spot assay revealed that a single intranasal dose of the Shigella HIV-1 gp120 DNA vaccine vector elicited a CD8(+) T-cell response to gp120, the magnitude of which was comparable to the sizes of the analogous responses to gp120 that developed in mice vaccinated intraperitoneally with the vaccinia-env vector or intramuscularly with the gp120 DNA vaccine. In addition, a single dose of the Shigella gp120 DNA vaccine vector afforded significant protection against a vaccinia-env challenge. Moreover, the number of vaccinia-env PFU recovered in mice vaccinated intranasally with the Shigella vector was about fivefold less than the number recovered from mice vaccinated intramuscularly with the gp120 DNA vaccine. Since the Shigella vector did not express detectable levels of gp120, this report confirms that Shigella vectors are capable of delivering passenger DNA vaccines to host cells and inducing robust CD8(+) T-cell responses to antigens expressed by the DNA vaccines. Furthermore, to our knowledge, this is the first documentation of antiviral protective immunity following vaccination with a live Shigella DNA vaccine vector.  相似文献   

6.
Immunization programs have often been impeded by vaccine scares, as evidenced by the measles-mumps-rubella (MMR) autism vaccine scare in Britain. A "free rider" effect may be partly responsible: vaccine-generated herd immunity can reduce disease incidence to such low levels that real or imagined vaccine risks appear large in comparison, causing individuals to cease vaccinating. This implies a feedback loop between disease prevalence and strategic individual vaccinating behavior. Here, we analyze a model based on evolutionary game theory that captures this feedback in the context of vaccine scares, and that also includes social learning. Vaccine risk perception evolves over time according to an exogenously imposed curve. We test the model against vaccine coverage data and disease incidence data from two vaccine scares in England & Wales: the whole cell pertussis vaccine scare and the MMR vaccine scare. The model fits vaccine coverage data from both vaccine scares relatively well. Moreover, the model can explain the vaccine coverage data more parsimoniously than most competing models without social learning and/or feedback (hence, adding social learning and feedback to a vaccine scare model improves model fit with little or no parsimony penalty). Under some circumstances, the model can predict future vaccine coverage and disease incidence--up to 10 years in advance in the case of pertussis--including specific qualitative features of the dynamics, such as future incidence peaks and undulations in vaccine coverage due to the population's response to changing disease incidence. Vaccine scares could become more common as eradication goals are approached for more vaccine-preventable diseases. Such models could help us predict how vaccine scares might unfold and assist mitigation efforts.  相似文献   

7.
对HIV疫苗的研究一直是国际上艾滋病方面研究的热点和难点。动物模型则为疫苗研究必不可缺少的重要工具,缺乏合适的动物模型很大程度上制约了AIDS疫苗的研究。目前在国际上SIV或SHIV感染的猕猴模型为最常用的AIDS研究模型,受猕猴背景及病毒特性等多种因素的影响,使得以上两种模型在HIV疫苗研究中仍存在一定的局限性。为了更好地发挥猕猴模型在HIV疫苗研究中的巨大潜力,开发理想的AIDS猕猴模型已成为目前HIV疫苗研究的首要任务。本文简要介绍了AIDS疫苗的研发策略、研发概况以及SIV/SHIV猕猴模型在HIV疫苗中的应用,并对其中存在的问题及其应用前景进行了探讨。  相似文献   

8.
目的研究轴突生长抑制因子重组DNA疫苗对转基因阿尔茨海默症小鼠的预防治疗。方法轴突生长抑制因子重组DNA疫苗肌肉注射APP/PS1双转阿尔茨海默症模型小鼠。设野生对照组、模型对照组、空载体对照组、疫苗组。水迷宫实验检测小鼠行为学差别。结果疫苗组小鼠在4.5月龄水迷宫实验中学习记忆能力较模型对照及空载体对照组有显著差异(P〈0.05)。结论肌肉注射轴突生长抑制因子DNA重组疫苗能够改善小鼠学习记忆能力。  相似文献   

9.
AIDS猕猴模型在HIV疫苗研究中的应用   总被引:2,自引:0,他引:2  
对HIV疫苗的研究一直是国际上艾滋病方面研究的热点和难点。动物模型则为疫苗研究必不可缺少的重要工具,缺乏合适的动物模型很大程度上制约了AIDS疫苗的研究。目前在国际上SIV或SHIV感染的猕猴模型为最常用的AIDS研究模型,受猕猴背景及病毒特性等多种因素的影响,使得以上两种模型在HIV疫苗研究中仍存在一定的局限性。为了更好地发挥猕猴模型在HIV疫苗研究中的巨大潜力,开发理想的AIDS猕猴模型已成为目前HIV疫苗研究的首要任务。本文简要介绍了AIDS疫苗的研发策略、研发概况以及SIV/SHIV猕猴模型在HIV疫苗中的应用,并对其中存在的问题及其应用前景进行了探讨。  相似文献   

10.
A new improved sub-unit vaccine for plague: the basis of protection   总被引:14,自引:1,他引:13  
Abstract In this study, we have determined the limit of protection achievable by immunisation with sub-units of Yersinia pestis against the development of plague in an experimental animal model. Co-immunisation with the purified culture-derived F1 and the recombinant V sub-units afforded a greater level of protection than with either sub-unit alone. The protection given by the combined sub-units was several orders of magnitude greater than that afforded by the whole cell killed (Cutter USP) vaccine and was equivalent to that achieved by vaccination with EV76, the live attenuated Y. pestis vaccine strain. However, the combined sub-unit vaccine has clear advantages over the live vaccine in terms of safety of use and absence of side-effects.  相似文献   

11.
Vaccination is a feasible strategy for controlling the haematophagous poultry red mite Dermanyssus gallinae. A cDNA library enriched for genes upregulated after feeding was created to identify potential vaccine antigens. From this library, a gene (Dg-CatD-1) encoding a 383 amino acid protein (Dg-CatD-1) with homology to cathepsin D lysosomal aspartyl proteinases was identified as a potential vaccine candidate. A second gene (Dg-CatL-1) encoding a 341 amino acid protein (Dg-CatL-1) with homology to cathepsin L cysteine proteinases was also selected for further study. IgY obtained from naturally infested hens failed to detect Dg-CatD-1 suggesting that it is a concealed antigen. Conversely, Dg-CatL-1 was detected by IgY derived from natural-infestation, indicating that infested hens are exposed to Dg-CatL-1. Mortality rates 120 h after mites had been fed anti-Dg-CatD-1 were significantly higher than those fed control IgY (PF<0·01). In a survival analysis, fitting a proportional hazards model to the time of death of mites, anti-Dg-CatD-1 and anti-Dg-CatL-1 IgY had 4·42 and 2·13 times higher risks of dying compared with controls (PF<0·05). Dg-CatD-1 and L-1 both have potential as vaccine antigens as part of a multi-component vaccine and have the potential to be improved as vaccine antigens using alternative expression systems.  相似文献   

12.
The development of an effective vaccine preventing HIV-1 infection remains elusive. Thus, the development of novel approaches capable of preventing HIV-1 transmission is of paramount importance. However, this is partly hindered by the lack of an easily accessible small-animal model to rapidly measure viral entry. Here, we report the generation of a human CD4- and human CCR5-expressing transgenic luciferase reporter mouse that facilitates measurement of peritoneal and genitomucosal HIV-1 pseudovirus entry in vivo. We show that antibodies and antiretrovirals mediate preexposure protection in this mouse model and that the serum antibody concentration required for protection from cervicovaginal infection is comparable to that required to protect macaques. Our results suggest that this system represents a model for the preclinical evaluation of prophylactic or vaccine candidates. It further supports the idea that broadly neutralizing antibodies should be evaluated for use as preexposure prophylaxis in clinical trials.  相似文献   

13.
ABSTRACT: Enterovirus 71 (EV71) causes severe neurological diseases resulting in high mortality in young children worldwide. Development of an effective vaccine against EV71 infection is hampered by the lack of appropriate animal models for efficacy testing of candidate vaccines. Previously, we have successfully tested the immunogenicity and protectiveness of a candidate EV71 vaccine, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP11-100) protein, in a mouse model of EV71 infection. A drawback of this system is its limited window of EV71 susceptibility period, 2 weeks after birth, leading to restricted options in the evaluation of optimal dosing regimens. To address this issue, we have assessed the NPt-VP11-100 candidate vaccine in a hamster system, which offers a 4-week susceptibility period to EV71 infection. Results obtained showed that the NPt-VP11-100 candidate vaccine stimulated excellent humoral immune response in the hamsters. Despite the high level of antibody production, they failed to neutralize EV71 viruses or protect vaccinated hamsters in viral challenge studies. Nevertheless, these findings have contributed towards a better understanding of the NPt-VP11-100 recombinant protein as a candidate vaccine in an alternative animal model system.  相似文献   

14.
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) in infected individuals after a long incubation period. To dissect the mechanisms of the development of the disease, we have previously established a rat model of ATL-like disease which allows examination of the growth and spread of HTLV-1 infected tumor cells, as well assessment of the effects of immune T cells on the development of the disease. In the present study, we induced HTLV-1 Tax-specific cytotoxic T lymphocyte (CTL) immunity by vaccination with Tax-coding DNA and examined the effects of the DNA vaccine in our rat ATL-like disease model. Our results demonstrated that DNA vaccine with Tax effectively induced Tax-specific CTL activity in F344/N Jcl-rnu/+ (nu/+) rats and that these CTLs were able to lyse HTLV-1 infected syngeneic T cells in vitro. Adoptive transfer of these immune T cells effectively inhibited the in vivo growth of HTLV-1-transformed tumor in F344/N Jcl-rnu/rnu (nu/nu) rats inoculated with a rat HTLV-1 infected T cell line. Vaccination with mutant Tax DNA lacking transforming ability also induced efficient anti-tumor immunity in this model. Our results indicated a promising effect for DNA vaccine with HTLV-1 Tax against HTLV-1 tumor development in vivo.  相似文献   

15.
Cancer vaccines serve as a promising clinical immunotherapeutic strategy that help to trigger an effective and specific antitumor immune response compared to conventional therapies. However, poor immunogenicity of tumor cells remains a major obstacle for clinical application, and developing new methods to modify the immunogenicity of tumor cells may help to improve the clinical outcome of cancer vaccines. 4T1 mouse breast cancer cell line has been known as poorly immunogenic and highly metastatic cell line. Using this model, we identified a sub cell line of 4T1—designated as 4T1-Sapporo (4T1-S)—which shows immunogenic properties when used as a vaccine against the same line. In 4T1-S-vaccinated mice, subcutaneous injection of 4T1-S resulted in an antitumor inflammatory response represented by significant enlargement of draining lymph nodes, accompanied with increased frequencies of activated CD8 T cells and a subpopulation of myeloid cells. Additionally, 4T1-S vaccine was ineffective to induce tumor rejection in nude mice, which importantly indicate that 4T1-S vaccine rely on T cell response to induce tumor rejection. Further analysis to identify mechanisms that control tumor immunogenicity in this model may help to develop new methods for improving the efficacies of clinical cancer vaccines.  相似文献   

16.
Adjuvants potentiate antigen-specific protective immune responses and can be key elements promoting vaccine effectiveness. We previously reported that the Onchocerca volvulus recombinant protein rOv-ASP-1 can induce activation and maturation of na?ve human DCs and therefore could be used as an innate adjuvant to promote balanced Th1 and Th2 responses to bystander vaccine antigens in mice. With a few vaccine antigens, it also promoted a Th1-biased response based on pronounced induction of Th1-associated IgG2a and IgG2b antibody responses and the upregulated production of Th1 cytokines, including IL-2, IFN-γ, TNF-α and IL-6. However, because it is a protein, the rOv-ASP-1 adjuvant may also induce anti-self-antibodies. Therefore, it was important to verify that the host responses to self will not affect the adjuvanticity of rOv-ASP-1 when it is used in subsequent vaccinations with the same or different vaccine antigens. In this study, we have established rOv-ASP-1's adjuvanticity in mice during the course of two sequential vaccinations using two vaccine model systems: the receptor-binding domain (RBD) of SARS-CoV spike protein and a commercial influenza virus hemagglutinin (HA) vaccine comprised of three virus strains. Moreover, the adjuvanticity of rOv-ASP-1 was retained with an efficacy similar to that obtained when it was used for a first vaccination, even though a high level of anti-rOv-ASP-1 antibodies was present in the sera of mice before the administration of the second vaccine. To further demonstrate its utility as an adjuvant for human use, we also immunized non-human primates (NHPs) with RBD plus rOv-ASP-1 and showed that rOv-ASP-1 could induce high titres of functional and protective anti-RBD antibody responses in NHPs. Notably, the rOv-ASP-1 adjuvant did not induce high titer antibodies against self in NHPs. Thus, the present study provided a sound scientific foundation for future strategies in the development of this novel protein adjuvant.  相似文献   

17.
Several mammalian cell lines, including Madin–Darby canine kidney (MDCK) cells have been approved by regulators for manufacturing of human vaccines. A new MDCK 9B9-1E4 cloned cell line has been created which is capable of producing live attenuated influenza vaccine (LAIV) with high yield. This cell line was shown to be non tumorigenic in eight week old adult athymic nude mouse model. This property is desirable for vaccine production and is unique to this cell line and is not known to be shared by other MDCK cell lines that are currently used for vaccine production. This significant difference in tumorigenic phenotype required further characterization of this cell line to ensure its safety for use in vaccine production. This is particularly important for LAIV production where it is not possible to incorporate a virus inactivation and/or removal step during manufacturing. Characterization of this cell line included extensive adventitious agent testing, tumorigenicity and oncogenicity assessment studies. Here, we describe the development of tumorigenic MDCK cell lines for use as positive controls and in vitro methods to aid in the evaluation of the tumorigenicity of MDCK 9B9-1E4 cloned cells. Tumorigenic MDCK cells were successfully generated following Hras and cMyc oncogene transfection of MDCK 9B9-1E4 cloned cells. In this study we demonstrate the lack of tumorigenic potential of the MDCK 9B9-1E4 cloned cell line in adult athymic nude mice model.  相似文献   

18.
Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals. The aim of the present study is to evaluate a plasmid DNA immunization system that expresses the FMDV/O/IRN/2007 VP1 gene and compare it with the conventional inactivated vaccine in an animal model. The VP1 gene was sub-cloned into the unique Kpn I and BamH I cloning sites of the pcDNA3.1+ and pEGFP-N1 vectors to construct the VP1 gene cassettes. The transfected BHKT7 cells with sub-cloned pEGFP-N1-VP1 vector expressed GFP-VP1 fusion protein and displayed more green fluorescence spots than the transfected BHKT7 cells with pEGFP-N1 vector, which solely expressed the GFP protein. Six mice groups were respectively immunized by the sub-cloned pcDNA3.1+-VP1 gene cassette as the DNA vaccine, DNA vaccine and PCMV-SPORT-GMCSF vector (as molecular adjuvant) together, conventional vaccine, PBS (as negative control), pcDNA3.1+ vector (as control group) and PCMV-SPORT vector that contained the GMCSF gene (as control group). Significant neutralizing antibody responses were induced in the mice which were immunized using plasmid vectors expressing the VP1 and GMCSF genes together, the DNA vaccine alone and the conventional inactivated vaccine (P<0.05). Co-administration of DNA vaccine and GMCSF gene improved neutralizing antibody response in comparison with administration of the DNA vaccine alone, but this response was the most for the conventional vaccine group. However, induction of humeral immunity response in the conventional vaccine group was more protective than for the DNA vaccine, but T-cell proliferation and IFN-γ concentration were the most in DNA vaccine with the GMCSF gene. Therefore the group that was vaccinated by DNA vaccine with the GMCSF gene, showed protective neutralizing antibody response and the most Th1 cellular immunity.  相似文献   

19.
Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced.  相似文献   

20.

Background

Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis.

Methodology/Principal Findings

The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus.

Conclusions/Significance

Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号