首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The methyltransferase, M.EcoKI, recognizes the DNA sequence 5'-AACNNNNNNGTGC-3' and methylates adenine at the underlined positions. DNA methylation has been shown by crystallography to occur via a base flipping mechanism and is believed to be a general mechanism for all methyltransferases. If no structure is available, the fluorescence of 2-aminopurine is often used as a signal for base flipping as it shows enhanced fluorescence when its environment is perturbed. We find that 2-aminopurine gives enhanced fluorescence emission not only when it is placed at the M.EcoKI methylation sites but also at a location adjacent to the target adenine. Thus it appears that 2-aminopurine fluorescence intensity is not a clear indicator of base flipping but is a more general measure of DNA distortion. Upon addition of the cofactor S-adenosyl-methionine to the M.EcoKI:DNA complex, the 2-aminopurine fluorescence changes to that of a new species showing excitation at 345 nm and emission at 450 nm. This change requires a fully active enzyme, the correct cofactor and the 2-aminopurine located at the methylation site. However, the new fluorescent species is not a covalently modified form of 2-aminopurine and we suggest that it represents a hitherto undetected physicochemical form of 2-aminopurine.  相似文献   

2.
EcoP15I DNA methyltransferase, a member of the type III restriction-modification system, binds to the sequence 5'-CAGCAG-3' transferring a methyl group from S-adenosyl-l-methionine to the second adenine base. We have investigated protein-DNA interactions in the methylase-DNA complex by three methods. Determination of equilibrium dissociation constants indicated that the enzyme had higher affinity for DNA containing mismatches at the target base within the recognition sequence. Potassium permanganate footprinting studies revealed that there was a hyper-reactive permanganate cleavage site coincident with adenine that is the target base for methylation. More importantly, to detect DNA conformational alterations within the enzyme-DNA complexes, we have used a fluorescence-based assay. When EcoP15I DNA methyltransferase bound to DNA containing 2-aminopurine substitutions within the cognate sequence, an eight to tenfold fluorescent enhancement resulting from enzymatic flipping of the target adenine base was observed. Furthermore, fluorescence spectroscopy analysis showed that the changes attributable to structural distortion were specific for only the bases within the recognition sequence. More importantly, we observed that both the adenine bases in the recognition site appear to be structurally distorted to the same extent. While the target adenine base is probably flipped out of the DNA duplex, our results also suggest that fluorescent enhancements could be derived from protein-DNA interactions other than base flipping. Taken together, our results support the proposed base flipping mechanism for adenine methyltransferases.  相似文献   

3.
The EcoKI methyltransferase methylates two adenines on opposite strands of its bipartite DNA recognition sequence AAC(N6)GTGC. The enzyme has a strong preference for hemimethylated DNA substrates, but the methylation state of the DNA does not influence its binding affinity. Methylation interference was used to compare the contacts made by the EcoKI methyltransferase with unmodified, hemimethylated or fully modified DNAs. Contacts were seen at or near the N7 position of guanine, in the major groove, for all of the guanines in the EcoKI recognition sequence, and at two guanines on the edge of the intervening spacer sequence. The presence of the cofactor and methyl donor S-adenosyl methionine had a striking effect on the interference pattern for unmodified DNA which could not be mimicked by the presence of the cofactor analogue S-adenosyl homocysteine. In contrast, S-adenosyl methionine had no effect on the interference patterns for either kind of hemimethylated DNA, or for fully modified DNA. Differences between the interference patterns for the unmodified DNA and any of the three forms of methylated DNA provide evidence that methylation of the target sequence influences the conformation of the protein-DNA interface, and illustrate the importance of S-adenosyl methionine in the distinction between unmodified and methylated DNA by the methyltransferase.  相似文献   

4.
The EcoRV DNA methyltransferase methylates the first adenine in the GATATC recognition sequence. It is presumed that methylation proceeds by a nucleotide flipping mechanism but no crystal structure is available to confirm this. A popular solution-phase assay for nucleotide flipping employs the fluorescent adenine analogue, 2-aminopurine (2AP), substituted at the methylation target site; a substantial increase in fluorescence intensity on enzyme binding indicates flipping. However, this appeared to fail for M.EcoRV, since 2AP substituted for the non-target adenine in the recognition sequence showed a much greater intensity increase than 2AP at the target site. This anomaly is resolved by recording the fluorescence decay of 2AP which shows that the target 2AP is indeed flipped by the enzyme, but its fluorescence is quenched by interaction with aromatic residues in the catalytic site, whereas bending of the duplex at the non-target site alleviates inter-base quenching and exposes the 2AP to solvent.  相似文献   

5.
By utilization of polymerase chain reaction techniques, single-stranded DNA of defined length and sequence containing a purine analog, 2-chloroadenine, in place of adenine was synthesized. This was accomplished by a combination of standard polymerase chain amplification reactions with Thermus aquaticus DNA polymerase in the presence of four normal deoxynucleoside triphosphates, M13 duplex DNA as template, and two primers to generate double-stranded DNA 118 bases in length. An asymmetric polymerase chain reaction, which produced an excess of single-stranded 98-base DNA, was then conducted with 2-chloro-2'-deoxy-adenosine 5'-triphosphate in place of dATP and with only one primer that annealed internal to the original two primers. Standard polymerase chain reaction techniques alone conducted in the presence of the analog as the fourth nucleotide did not produce duplex DNA that was modified within both strands. This asymmetric technique allows the incorporation of an altered nucleotide at specific sites into large quantities of single-stranded DNA without using chemical phosphoramidite synthesis procedures and circumvents the apparent inability of DNA polymerase to synthesize fully substituted double-stranded DNA during standard amplification reactions. The described method will permit the study of the effects of modified bases in template DNA on a variety of protein-DNA interactions and enzymes.  相似文献   

6.
DNA methyltransferases flip their target bases out of the DNA double helix for catalysis. Base flipping of C5-cytosine DNA methyltransferases was directly observed in the protein-DNA cocrystal structures of M.HhaI and M.HaeIII. Indirect structural evidence for base flipping of N6-adenine and N4-cytosine DNA methyltransferases was obtained by modeling DNA into the three-dimensional structures of M.TaqI and M.PvuII in complex with the cofactor. In addition, biochemical evidence of base flipping was reported for different N6-adenine DNA methyltransferases. As no protein-DNA cocrystal structure for the related N6-adenine and N4-cytosine DNA methyltransferases is available, we used light-induced photochemical cross-linking to identify the binding site of the extrahelical target bases. The N6-adenine DNA methyltransferases M.TaqI and M.CviBIII, which both methylate adenine within the double-stranded 5'-TCGA-3' DNA sequence, were photo-cross-linked to duplex oligodeoxyribonucleotides containing 5-iodouracil at the target position in 50-60% and almost quantitative yield, respectively. Proteolytic fragmentation of the M. CviBIII-DNA complex followed by Edman degradation and electrospray ionization mass spectrometry indicates photo-cross-linking to tyrosine 122. In addition, the mutant methyltransferases M. TaqI/Y108A and M.TaqI/F196A were photo-cross-linked with 6-fold and 2-fold reduced efficiency, respectively, which suggests that tyrosine 108 is the primary site of modification in M.TaqI. Our results indicate a close proximity between the extrahelical target base and tyrosine 122 in M.CviBIII or tyrosine 108 in M.TaqI. As both residues belong to the conserved motif IV ((N/D/S)(P/I)P(Y/F/W)) found in all N6-adenine and N4-cytosine DNA as well as in N6-adenine RNA methyltransferases, a similar spatial relationship between the target bases and the aromatic amino acid residue within motif IV is expected for all these methyltransferases.  相似文献   

7.
A modified actinomycin D was prepared with a hydroxyl group that replaced the amino group at the chromophore 2-position, a substitution known to strongly reduce affinity for double-stranded DNA. Interactions of the modified drug on single-stranded DNAs of the defined sequence were investigated. Competition assays showed that 2-hydroxyactinomycin D has low affinity for two oligonucleotides that have high affinities (K(a) = 5-10 x 10(6) M(-1) oligomer) for 7-aminoactinomycin D and actinomycin D. Primer extension inhibition assays performed on several single-stranded DNA templates totaling around 1000 nt in length detected a single high affinity site for 2-hydroxyactinomycin D, while many high affinity binding sites of unmodified actinomycin D were found on the same templates. The sequence selectivity of 2-hydroxyactinomycin D binding is unusually high and approximates the selectivity of restriction endonucleases. Binding appears to require a complex structure, including residues well removed from the polymerase pause site.  相似文献   

8.
I Taylor  D Watts    G Kneale 《Nucleic acids research》1993,21(21):4929-4935
The type I DNA modification methylase M.EcoR124I binds sequence specifically to DNA and protects a 25bp fragment containing its cognate recognition sequence from digestion by exonuclease III. Using modified synthetic oligonucleotide duplexes we have investigated the catalytic properties of the methylase, and have established that a specific adenine on each strand of DNA is the site of methylation. We show that the rate of methylation of each adenine is increased at least 100 fold by prior methylation at the other site. However, this is accompanied by a significant decrease in the affinity of the methylase for these substrates according to competitive gel retardation assays. In contrast, methylation of an adenine in the recognition site which is not a target for the enzyme results in only a small decrease in both DNA binding affinity and rate of methylation by the enzyme.  相似文献   

9.
10.
The accumulation of the cosolutes ethylene glycol, urea, glycine, sarcosine, and glycine betaine at the single-stranded DNA surface exposed upon melting the double helix has been quantified for DNA samples of different guanine-cytosine (GC) content using the local-bulk partitioning model [Record, M. T., Jr., Zhang, W., and Anderson, C. F. (1998) Adv. Protein Chem. 51, 281-353]. Urea and ethylene glycol are both locally accumulated at single-stranded DNA relative to bulk solution. Urea exhibits a stronger affinity for adenine (A) and thymine (T) bases, leading to a greater net dehydration of these bases upon DNA melting; ethylene glycol local accumulation is practically independent of base composition. However, glycine, sarcosine, and glycine betaine are not necessarily locally accumulated at single strands after melting relative to bulk solution, although they are locally accumulated relative to double-stranded DNA. The local accumulation of glycine, sarcosine, and glycine betaine at single strands relative to double-stranded DNA decreases with bulk cosolute molality and increases with GC content for all N-methylated glycines, demonstrating a stronger affinity for G and C bases. Glycine also shows a minimum in melting temperature T(m) at 1-2 m for DNA samples of 50% GC content or less. Increasing ionic strength attenuates the local accumulation of urea, glycine, sarcosine, and glycine betaine and removes the minimum in T(m) with glycine. This attenuation in local accumulation results in counterion release during the melting transition that is dependent on water activity and, hence, cosolute molality.  相似文献   

11.
EcoRI DNA methyltransferase was previously shown to bend its cognate DNA sequence by 52 degrees and stabilize the target adenine in an extrahelical orientation. We describe the characterization of an EcoRI DNA methyltransferase mutant in which histidine 235 was selectively replaced with asparagine. Steady-state kinetic and thermodynamic parameters for the H235N mutant revealed only minor functional consequences: DNA binding affinity (KDDNA) was reduced 10-fold, and kcat was decreased 30%. However, in direct contrast to the wild type enzyme, DNA bending within the mutant enzyme-DNA complexes was not observed by scanning force microscopy. The bending-deficient mutant showed enhanced discrimination against the methylation at nontarget sequence DNA. This enhancement of enzyme discrimination was accompanied by a change in the rate-limiting catalytic step. No presteady-state burst of product formation was observed, indicating that the chemistry step (or prior event) had become rate-limiting for methylation. Direct observation of the base flipping transition showed that the lack of burst kinetics was entirely due to slower base flipping. The combined data show that DNA bending contributes to the correct assembly of the enzyme-DNA complex to accelerate base flipping and that slowing the rate of this precatalytic isomerization can enhance specificity.  相似文献   

12.
EcoP1I methyltransferase (M.EcoP1I) belongs to the type III restriction-modification system encoded by prophage P1 that infects Escherichia coli. Binding of M.EcoP1I to double-stranded DNA and single-stranded DNA has been characterized. Binding to both single- and double-stranded DNA could be competed out by unlabeled single-stranded DNA. Metal ions did not influence DNA binding. Interestingly, M.EcoP1I was able to methylate single-stranded DNA. Kinetic parameters were determined for single- and double-stranded DNA methylation. This feature of the enzyme probably functions in protecting the phage genome from restriction by type III restriction enzymes and thus could be considered as an anti-restriction system. This study describing in vitro methylation of single-stranded DNA by the type III methyltransferase EcoP1I allows understanding of the mechanism of action of these enzymes and also their role in the biology of single-stranded phages.  相似文献   

13.
The PspGI restriction–modification system recognizes the sequence CCWGG. R.PspGI cuts DNA before the first C in the cognate sequence and M.PspGI is thought to methylate N4 of one of the cytosines in the sequence. M.PspGI enhances fluorescence of 2-aminopurine in DNA if it replaces the second C in the sequence, while R.PspGI enhances fluorescence when the fluorophore replaces adenine in the central base pair. This strongly suggests that the methyltransferase flips the second C in the recognition sequence, while the endonuclease flips both bases in the central base pair out of the duplex. M.PspGI is the first N4-cytosine MTase for which biochemical evidence for base flipping has been presented. It is also the first type IIP methyltransferase whose catalytic activity is strongly stimulated by divalent metal ions. However, divalent metal ions are not required for its base-flipping activity. In contrast, these ions are required for both base flipping and catalysis by the endonuclease. The two enzymes have similar temperature profiles for base flipping and optimal flipping occurs at temperatures substantially below the growth temperature of the source organism for PspGI and for the catalytic activity of endonuclease. We discuss the implications of these results for DNA binding by these enzymes and their evolutionary origin.  相似文献   

14.
Like in bacteria, DNA in these organisms is subjected to enzymatic modification (methylation) both at adenine and cytosine residues. There is an indirect evidence that adenine DNA methylation takes place also in animals. In plants m6A was detected in total, mitochondrial and nuclear DNAs; in plants one and the same gene (DRM2) can be methylated both at adenine and cytosine residues. ORF homologous to bacterial adenine DNA-methyltransferases are present in nuclear DNA of protozoa, yeasts, insects, nematodes, higher plants, vertebrates and other eukaryotes. Thus, adenine DNA-methyltransferases can be found in the various evolutionary distant eukaryotes. First N6-adenine DNA-methyltransferase (wadmtase) of higher eukaryotes was isolated from vacuolar fraction of vesicles obtained from aging wheat coleoptiles; in the presence of S-adenosyl-L-methionine this Mg2+ -, Ca2+ -dependent enzyme de novo methylates first adenine residue in TGATCA sequence in single- and double-stranded DNA but it prefers single-stranded DNA structures. Adenine DNA methylation in eukaryotes seems to be involved in regulation of both gene expression and DNA replication including replication of mitochondrial DNA. It can control persistence of foreign DNA in a cell and seems to be an element of R-M system in plants. Thus, in eukaryotic cell there are, at least, two different systems of the enzymatic DNA methylations (adenine and cytosine ones) and a special type of regulation of gene functioning based on the combinatory hierarchy of these interdependent genome modifications.  相似文献   

15.
RecA protein plays a pivotal role in homologous recombination in Escherichia coli. RecA polymerizes on single-stranded (ss) DNA forming a nucleoprotein filament. Then double-stranded (ds) DNA is bound and searched for segments homologous to the ssDNA. Finally, homologous strands are exchanged, a new DNA duplex is formed, and ssDNA is displaced. We report a quantitative analysis of RecA interactions with ss d(pN)n of various structures and lengths using these oligonucleotides as inhibitors of RecA filamentation on d(pT)20. DNA recognition appears to be mediated by weak interactions between its structural elements and RecA monomers within a filament. Orthophosphate and dNMP are minimal inhibitors of RecA filamentation (I50 = 12-20 mM). An increase in homo-d(pN)2-40 length by one unit improves their affinity for RecA (f factor) approximately twofold through electrostatic contacts of RecA with internucleoside phosphate DNA moieties (f approximately = 1.56) and specific interactions with T or C bases (f approximately = 1.32); interactions with adenine bases are negligible. RecA affinity for d(pN)n containing normal or modified nucleobases depends on the nature of the base, features of the DNA structure. The affinity considerably increases if exocyclic hydrogen bond acceptor moieties are present in the bases. We analyze possible reasons underlying RecA preferences for DNA sequence and length and propose a model for recognition of ssDNA by RecA.  相似文献   

16.
Flp is a member of the integrase family of site-specific recombinases. Flp is known to be a double-stranded (ds)DNA binding protein that binds sequence specifically to the 13 bp binding elements in the FRT site (Flprecognitiontarget). We subjected a random pool of oligonucleotides to the in vitro binding site selection method and have unexpectedly recovered a series of single-stranded oligonucleotides to which Flp binds with high affinity. These single-stranded oligonucleotides differ in sequence from the duplex FRT site. The minimal length of the oligonucleotides which is active is 29 nt. This single strand-specific DNA binding activity is located in the same C-terminal 32 kDa domain of Flp in which the site-specific dsDNA binding activity resides. Competition studies suggest that the apparent affinity of Flp for single-stranded oligonucleotide is somewhat less than for a complete duplex FRT site but greater than for a single duplex 13 bp binding element. We have also shown that Cre, another member of the integrase family of site-specific recombinases, also exhibits single-stranded DNA binding similar to that of Flp.  相似文献   

17.
Protein C23, a predominant nucleolar phosphoprotein and a putative nucleolus organizer protein, was analyzed for its general DNA binding characteristics and for its selectivity in binding plasmid DNAs containing cloned fragments of the genes that code for ribosomal RNA (rDNA). By use of nitrocellulose filter disk assays, the protein bound saturably to nuclear DNA with a relatively high affinity. Binding was maximal at low ionic strength (0-0.1 M KCl) with progressively decreasing binding at or above 0.2 M. In competition assays protein C23 showed a marked preference for linear single-stranded vs. double-stranded DNA and little or no affinity for ribosomal RNA. The relative affinities of rDNA sequences for protein C23 were determined with cloned fragments spanning 15.8 kilobases (kb) of DNA starting approximately 3.7 kb upstream from the initiation site for 45S preribosomal RNA to near the 3' end of the sequence coding for 28S RNA. Of the five linearized plasmids tested, only one (pKW1) was an effective competitor for 32P-labeled nuclear DNA. As measured by the concentration of competing DNA required to achieve 50% competition, pKW1 was approximately 20-fold more effective than the second best competitor. The DNA insert in pKW1 is a 3.5-kb sequence which is located in the nontranscribed spacer region less than 0.5 kb upstream from the initiation site for 45S preribosomal RNA. These results suggest that protein C23 has a preference for binding DNA sequences in the nontranscribed spacer of rDNA.  相似文献   

18.
The EcoRV DNA-(adenine-N(6))-methyltransferase recognizes GATATC sequences and modifies the first adenine residue within this site. We show here, that the enzyme binds to the DNA and the cofactor S-adenosylmethionine (AdoMet) in an ordered bi-bi fashion, with AdoMet being bound first. M.EcoRV binds DNA in a non-specific manner and the enzyme searches for its recognition site by linear diffusion with a range of approximately 1800 bp. During linear diffusion the enzyme continuously scans the DNA for the presence of recognition sites. Upon specific M.EcoRV-DNA complex formation a strong increase in the fluorescence of an oligonucleotide containing a 2-aminopurine base analogue at the GAT-2AP-TC position is observed which, most likely, is correlated with DNA bending. In contrast to the GAT-2AP-TC substrate, a G-2AP-TATC substrate in which the target base is replaced by 2-aminopurine does not show an increase in fluorescence upon M.EcoRV binding, demonstrating that 2-aminopurine is not a general tool to detect base flipping. Stopped-flow experiments show that DNA bending is a fast process with rate constants >10 s(-1). In the presence of cofactor, the specific complex adopts a second conformation, in which the target sequence is more tightly contacted by the enzyme. M.EcoRV exists in an open and in a closed state that are in slow equilibrium. Closing the open state is a slow process (rate constant approximately 0.7 min(-1)) that limits the rate of DNA methylation under single turnover conditions. Product release requires opening of the closed complex which is very slow (rate constant approximately 0.05-0.1 min(-1)) and limits the rate of DNA methylation under multiple turnover conditions. M.EcoRV methylates DNA sequences containing more than one recognition sites in a distributive manner. Since the dissociation rate from non-specific DNA does not depend on the length of the DNA fragment, DNA dissociation does not preferentially occur at the ends of the DNA.  相似文献   

19.
A simple and economy method of the biochemical assembling of long double-stranded DNA segments is described. A single-stranded polydeoxynucleotide 122 bases long representing a fragment of synthetic gene of human beta-interferon was assembled from three synthetic fragments 36 (two) and 50 bases long on four complementary 12-mers as templates. This single-stranded polynucleotide was converted, in the presence of DNA polymerase 1 and a 12-meric primer, in to the full-length double-stranded DNA (the beta-interferon gene segment). It was cloned into an E. coli plasmid vector pBR322 and its sequence confirmed.  相似文献   

20.
A DNA-modification methylase from Bacillus stearothermophilus V.   总被引:2,自引:0,他引:2       下载免费PDF全文
A type II modification methylase (M BstVI) was partially purified from the thermophilic bacterium Bacillus stearothermophilus V. The methylase catalyses the transfer of methyl groups from S-adenosyl-L-methionine to unmodified double-stranded DNA. The product of methylation was identified by paper chromatography as N6-methyladenine. Since M BstVI protects DNA against cleavage by BstVI and XhoI restriction endonucleases, it follows that it methylates the adenine residue in the sequence 5'-C-T-C-G-A-G-3'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号