首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luotonin A is a cytotoxic pyrroloquinazolinoquinoline alkaloid that has been shown to stabilize the human topoisomerase I-DNA covalent binary complex in the same fashion as the antitumor alkaloid camptothecin. A study of the structural elements in luotonin A required for binary complex stabilization has revealed key differences relative to those required for camptothecin.  相似文献   

2.
Camptothecin, a cytotoxic drug, is a strong inhibitor of nucleic acid synthesis in mammalian cells and a potent inducer of strand breaks in chromosomal DNA. Neither the equilibrium dialysis nor the unwinding measurement indicates any interaction between camptothecin and purified DNA. However, camptothecin induces extensive single strand DNA breaks in reactions containing purified mammalian DNA topoisomerase I. DNA breakage in vitro is immediate and reversible. Analyses of camptothecin-induced DNA breaks show that topoisomerase I is covalently linked to the 3' end of the broken DNA. In addition, camptothecin inhibits the catalytic activity of mammalian DNA topoisomerase I. We propose that camptothecin blocks the rejoining step of the breakage-reunion reaction of mammalian DNA topoisomerase I. This blockage results in the accumulation of a cleavable complex which resembles the transient intermediate proposed for eukaryotic DNA topoisomerase I. The inhibition of nucleic acid synthesis and the induction of DNA strand breaks observed in vivo may be related to the formation of this drug-induced cleavable complex.  相似文献   

3.
A series of new Luotonin A derivatives with substituents at rings A and E was synthesized, together with some E-ring-unsubstituted derivatives. Subsequently, the compound library was examined in silico for their binding into a previously proposed site in the DNA/topoisomerase I binary complex. Whereas no convincing correlation between docking scores and biological data from in vitro assays could be found, one novel 4,9-diamino Luotonin A derivative had strong antiproliferative activity based on massive G2/M phase arrest. As this biological activity clearly differs from the reference compound Camptothecin, this strongly indicates that at least some Luotonin A derivatives may be potent antiproliferative agents, however with a different mode of action.  相似文献   

4.
Five conjugates (16-20) composed of a paclitaxel and a camptothecin derivative joined by an imine linkage were synthesized and evaluated as cytotoxic agents and as inhibitors of DNA topoisomerase I. All of the conjugates were potent inhibitors of tumor cell replication with improved activity relative to camptothecin. Significantly, compounds 16-18 were more active than paclitaxel and camptothecin against HCT-8 (colon adenocarcinoma) cell replication, and the spectrum of activity was different from a simple mixture of paclitaxel and camptothecin. All of the conjugates were significantly less potent than camptothecin as inhibitors of human topoisomerase I in vitro with 16, 18, and 19 showing only marginal activity at 50 microM. Based on activity against drug-resistant cell line replication, one could conclude that the conjugates are simply acting as 'weak taxanes', but the spectrum of activity, particularly against MCF-7 and HCT-8, strongly suggests that a novel mechanism of action has been achieved through conjugation.  相似文献   

5.
Camptothecin, a cytotoxic antitumor compound, has been shown to produce protein-linked DNA breaks mediated by mammalian topoisomerase I. We have investigated the mechanism by which camptothecin disrupts DNA processing by topoisomerase I and have examined the effect of certain structurally related compounds on the formation of a DNA-topoisomerase I covalent complex. Enzyme-mediated cleavage of supercoiled plasmid DNA in the presence of camptothecin was completely reversed upon the addition of exogenous linear DNA or upon dilution of the reaction mixture. Camptothecin and topoisomerase I produced the same amount of cleavage from supercoiled DNA or relaxed DNA. In addition, the alkaloid decreased the initial velocity of supercoiled DNA relaxation mediated by catalytic quantities of topoisomerase I. Inhibition occurred under conditions favoring processive catalysis as well as under conditions favoring distributive catalysis. By use of [3H]camptothecin and an equilibrium dialysis assay, the alkaloid was shown to bind reversibly to a DNA-topoisomerase I complex, but not to isolated enzyme or isolated DNA. These results are consistent with a model in which camptothecin reversibly traps an intermediate involved in DNA unwinding by topoisomerase I and thereby perturbs a set of equilibria, resulting in increased DNA cleavage. By examining certain compounds that are structurally related to camptothecin, it was found that the 20-hydroxy group, which has been shown to be essential for antitumor activity, was also necessary for stabilization of the covalent complex between DNA and topoisomerase I. In contrast, no such correlation existed for UV-light-induced cleavage of DNA by Cu(II)-camptothecin derivatives.  相似文献   

6.
The influence of mammalian DNA topoisomerase I phosphorylation on enzyme activity has been investigated. Dephosphorylation by calf intestine alkaline phosphatase abolished the DNA relaxing activity of DNA topoisomerase I and the sensitivity of the enzyme to its specific inhibitor, camptothecin. DNA topoisomerase I could be reactivated by incubation with purified protein kinase C. DNA topoisomerase I was then able to relax supercoiled DNA processively, like the native enzyme, and to cleave 32P-end-labeled SV40 DNA fragments at the same sequences as the native enzyme in the presence of camptothecin. These results show that active DNA topoisomerase I is a phosphoprotein and suggest a possible regulatory role of protein kinase on topoisomerase I activity and on its sensitivity to camptothecin.  相似文献   

7.
8.
p14ARF (ARF) and topoisomerase I play central roles in cancer and have recently been shown to interact. The interaction activates topoisomerase I, an important target for camptothecin-like chemotherapeutic drugs, but the regulation of the interaction is poorly understood. We have used the H358 and H23 lung cancer cell lines and purified recombinant human topoisomerase I to demonstrate that the ARF/topoisomerase I interaction is regulated by topoisomerase I serine phosphorylation, a modification that regulates topoisomerase I activity. Both cell lines express wild-type ARF and topoisomerase I proteins at equivalent levels, but H23 topoisomerase I, unlike that of H358 cells, is largely devoid of serine phosphorylation, has low activity, and complexes poorly with ARF. The ability of H23 topoisomerase I to complex with ARF can be restored by treatment with the serine kinase, casein kinase II. Consistent with these observations, we show that the response of H23 cells to camptothecin treatment is unaffected by changes in intracellular levels of ARF. However, in H358 and PC-3 cells, which express a serine phosphorylated topoisomerase I that complexes with ARF, ectopic overexpression of ARF causes sensitization to camptothecin, and siRNA-mediated down-regulation of endogenous ARF causes desensitization to camptothecin. These biological responses correlate with increased and decreased levels, respectively, of ARF/topoisomerase I complex and DNA-bound topoisomerase I. Thus, ARF is a serine phosphorylation-dependent coregulator of topoisomerase I in vivo, and it regulates cellular sensitivity to camptothecin by interacting with topoisomerase I. Certain cancer associated defects affecting ARF/topoisomerase I complex formation could contribute to cellular resistance to camptothecin.  相似文献   

9.
Eighteen new water-soluble 7-(aminoacylhydrazono)-formyl camptothecins were synthesized and evaluated for their ability to cause protein-linked DNA breaks and to inhibit topoisomerase I activity. Compared with camptothecin, five of the compounds were as potent or more potent in these two assays but were less toxic in several cancer cell lines. The results suggest that the 7 position in the B ring is a suitable location for introducing a polar moiety into camptothecin producing analogues with enhanced topoisomerase I inhibiting activity.  相似文献   

10.
11.
A recent X-ray crystallographic analysis of the binding of a water soluble camptothecin analogue to the human topoisomerase I-DNA covalent binary complex has suggested the existence of some novel features in the way that camptothecin is bound to the binary complex. Four additional models based on chemical and biochemical data have also been proposed. Presently we describe S-containing analogues of camptothecin prepared on the basis of these models, and report their ability to form stable ternary complexes with human topoisomerase I, and to mediate cytotoxicity at the locus of topoisomerase I. The results indicate that replacement of the 20-OH group of CPT with a SH functionality results in diminution of the potency of CPT as a topoisomerase I poison, while replacement of the O atoms at positions 20 and 21 with S atoms results in essentially complete loss of topoisomerase I inhibitory activity.  相似文献   

12.
13.
Topoisomerase-targeting antitumor drugs   总被引:23,自引:0,他引:23  
Much has been learned about the unusual type of DNA damage produced by the topoisomerases. The mechanism by which these lesions trigger cell death, however, remains unclear, but it appears that DNA metabolic machinery transforms reversible single-strand cleavable complexes to overt strand breaks which may be an initial event in the cytotoxic pathway. For the topoisomerase I poisons, they produce breaks at replication forks that appear to be the equivalent of a break in duplex DNA. Indicating that this may be an important cytotoxic lesion is the hypersensitivity to camptothecin of the yeast mutant rad52, which is deficient in double-strand-break-repair. The topoisomerase poisons preferentially kill proliferating cells. In the case of the topoisomerase I poison camptothecin, dramatic S-phase-specific cytotoxicity can explain its preferential action on proliferating cells. For the topoisomerase II poisons, high levels of the enzyme in proliferating cells, and very low levels in quiescent cells appear to explain the resistance of quiescent cells to the drug's cytotoxic effects. Thus, the topoisomerase poisons convert essential enzymes into intracellular, proliferating-cell toxins. The identification of both topoisomerase I and II as the specific targets of cancer chemotherapeutic drugs now provides a rational basis for the development of topoisomerase I poisons for possible clinical use. Knowledge of the molecular mechanisms of cell killing may lead to the identification of new therapies for treating cancer. The topoisomerase poisons appear to be a good tool for studying cell killing mechanisms as they produce highly specific and reversible lesions.  相似文献   

14.
Two aza-analogues of the marine pyrroloquinoline alkaloids wakayin and tsitsikammamines A and B have been synthesized. The strategy used was based on a 1,3-dipolar cycloaddition reaction between indole 4,7-dione and a diazo-aminopropane derivative. One of the two analogues partially inhibits human topoisomerase I, whereas synthetic intermediates inhibit the enzyme DNA cleavage activity at a concentration comparable to that of the control drug camptothecin.  相似文献   

15.
Homocamptothecin (hCPT) is an E‐ring modified camptothecin (CPT) analogue, which showed pronounced inhibitory activity of topoisomerase I. In search of novel hCPT‐type anticancer agents, two series of hCPT derivatives were synthesized and evaluated in vitro against three human tumor cell lines. The results indicated that the 10‐substituted hCPT derivatives had a considerably higher cytotoxic activity than the 12‐substituted ones. Among the 10‐substituted compounds, 8a, 8b, 9b , and 9i showed an equivalent or even more potent activity than the positive control drug topotecan against the lung cancer cell line A‐549. Moreover, the hCPT analogues 8a and 8b exhibited a higher topoisomerase I inhibitory activity than CPT at a concentration of 100 μM .  相似文献   

16.
Topoisomerase 1 inhibition is an important strategy in targeted cancer chemotherapy. The drugs currently in use acting on this enzyme belong to the family of the camptothecins, and suffer severe limitations because of their low stability, which is associated with the hydrolysis of the δ-lactone moiety in their E ring. Luotonin A is a natural camptothecin analogue that lacks this functional group and therefore shows a much-improved stability, but at the cost of a lower activity. Therefore, the development of luotonin A analogues with an increased potency is important for progress in this area. In the present paper, a small library of luotonin A analogues modified at their A and B rings was generated by cerium(IV) ammonium nitrate-catalyzed Friedländer reactions. All analogues showed an activity similar or higher than the natural luotonin A in terms of topoisomerase 1 inhibition and some compounds had an activity comparable to that of camptothecin. Furthermore, most compounds showed a better activity than luotonin A in cell cytotoxicity assays. In order to rationalize these results, the first docking studies of luotonin-topoisomerase 1-DNA ternary complexes were undertaken. Most compounds bound in a manner similar to luotonin A and to standard topoisomerase poisons such as topotecan but, interestingly, the two most promising analogues, bearing a 3,5-dimethylphenyl substituent at ring B, docked in a different orientation. This binding mode allows the hydrophobic moiety to be shielded from the aqueous environment by being buried between the deoxyribose belonging to the G(+1) guanine and Arg364 in the scissile strand and the surface of the protein and a hydrogen bond between the D-ring carbonyl and the basic amino acid. The discovery of this new binding mode and its associated higher inhibitory potency is a significant advance in the design of new topoisomerase 1 inhibitors.  相似文献   

17.
Chemical studies of the Chinese herb Corydalis saxicola Bunting led to the isolation and identification of 14 alkaloids, 1-14. Seven of these compounds, 4-9 and 11, were obtained from this plant for the first time. Feruloylagmatine (7) is the first guanidine-type alkaloid to be identified in the family Papaveraceae and in dicotyledonous plants. All of the isolated compounds were assayed for inhibitory activity against human DNA topoisomerase I. A DNA cleavage assay demonstrated that these alkaloids specifically inhibit topoisomerase through stabilization of the enzyme-DNA complex. Among the isolated alkaloids, (-)-pallidine (8) and (-)-scoulerine (11) showed strong inhibitory activities toward topoisomerase I that were comparable to camptothecin, a typical topoisomerase I inhibitor. A preliminary structure-activity relationship study suggested that the quaternary ammonium ion might play an important role in topoisomerase I inhibition by the isoquinoline alkaloids. These data indicated that DNA topoisomerase I inhibition represents probably one of the anticarcinogenic mechanisms of C. saxicola.  相似文献   

18.
The marine alkaloid lamellarin D (LAM-D) has been recently characterized as a potent poison of human topoisomerase I endowed with remarkable cytotoxic activities against tumor cells. We report here the first structure-activity relationship study in the LAM-D series. Two groups of triester compounds incorporating various substituents on the three phenolic OH at positions 8, 14 and 20 of 6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one pentacyclic planar chromophore typical of the parent alkaloid were tested as topoisomerase I inhibitors. The non-amino compounds in group A showed no activity against topoisomerase I and were essentially non cytotoxic. In sharp contrast, compounds in group B incorporating amino acid residues strongly promoted DNA cleavage by human topoisomerase I. LAM-D derivatives tri-substituted with leucine, valine, proline, phenylalanine or alanine residues, or a related amino side chain, stabilize topoisomerase I-DNA complexes. The DNA cleavage sites detected at T downward arrow G or C downward arrow G dinucleotides with these molecules were identical to that of LAM-D but slightly different from those seen with camptothecin which stimulates topoisomerase I-mediated cleavage at T downward arrow G only. In the DNA relaxation and cleavage assays, the corresponding Boc-protected compounds and the analogues of the non-planar LAM-501 derivative lacking the 5-6 double bond in the quinoline B-ring showed no effect on topoisomerase I and were considerably less cytotoxic than the corresponding cationic compounds in the LAM-D series. The presence of positive charges on the molecules enhances DNA interaction but melting temperature studies indicate that DNA binding is not correlated with topoisomerase I inhibition or cytotoxicity. Cell growth inhibition by the 41 lamellarin derivatives was evaluated with a panel of tumor cells lines. With prostate (DU-145 and LN-CaP), ovarian (IGROV and IGROV-ET resistant to ecteinascidin-743) and colon (LoVo and LoVo-Dox cells resistant to doxorubicin) cancer cells (but not with HT29 colon carcinoma cells), the most cytotoxic compounds correspond to the most potent topoisomerase I poisons. The observed correlation between cytotoxicity and topoisomerase I inhibition strongly suggests that topoisomerase I-mediated DNA cleavage assays can be used as a guide to the development of superior analogues in this series. LAM-D is the lead compound of a new promising family of antitumor agents targeting topoisomerase I and the amino acid derivatives appear to be excellent candidates for a preclinical development.  相似文献   

19.
The Chinese hamster cell mutant V-C8 is defective in the Brca2 gene (Kraakman-van der Zwet et al., 2002, Cell Biol.; 22: 669). Here we report that V-C8 cells were 10-fold more sensitive to camptothecin, an inhibitor of topoisomerase I, than the parental V79 cells. The level of the relaxation activity of topoisomerase I in nuclear extracts was also lower (4-fold) in V-C8 than V79 cells, in spite of the fact that the level of the topoisomerase I protein was the same in these cells. The survival of V-C8 cells in the presence of camptothecin, the sensitivity of V-C8 topoisomerase I to camptothecin, and the level of the relaxation activity in V-C8 nuclear extract were almost completely restored by transfection of V-C8 cells with the murine Brca2 gene or by the transfer of human chromosome 13 providing the BRCA2 gene. These results indicate that the observed changes in the topoisomerase I activity in V-C8 are due to the defective function of the Brca2 gene.  相似文献   

20.
Topoisomerase I adjusts torsional stress in the genome by breaking and resealing one strand of the helix through a transient covalent coupling between enzyme and DNA. Camptothecin, a specific topoisomerase I poison, traps this covalent intermediate, thereby damaging the genome. Here we examined the activity of topoisomerase I at telomeric repeats to determine whether telomere structures are targets for DNA damage. We show that topoisomerase I is catalytically active in cleaving the G-rich telomeric strand in vitro in the presence of camptothecin but not in cleaving the C-rich strand. The topoisomerase I cleavage site is 5'-TT (downward arrow) AGGG-3' (cleavage site marked by the downward arrow). We also show that endogenous topoisomerase I can access telomeric DNA in vivo and form camptothecin-dependent covalent complexes. Therefore, each telomeric repeat represents a potential topoisomerase I cleavage site in vivo. Because telomere structures are comprised of a large number of repeats, telomeres in fact represent a high concentration of nested topoisomerase I sites. Therefore, more telomeric DNA damage by camptothecin could occur in cells with longer telomeres when cells possess equivalent levels of topoisomerase I. The evidence presented here suggests that DNA damage at telomeric repeats by topoisomerase I is a prominent feature of cell killing by camptothecin and triggers camptothecin-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号