首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated oxidation of amino acid phenylhydrazides by mushroom tyrosinase in the presence of 4-tert-butylcatechol and N-acetyl-L-tyrosine. Spectrophotometric measurements showed gradual disappearance of 4-tert-butyl-o-benzoquinone, generated by oxidation of 4-tert-butylcatechol with sodium periodate, after addition of amino acid phenylhydrazides. However, the presence of the phenylhydrazides did not influence the concentration of 4-tert-butyl-o-benzoquinone formed during enzymatic oxidation. Oxygen consumption measurements demonstrated that in a mixture both compounds were oxidized but the reaction rate was proportional to the concentration of the catechol. In the oxidation of N-acetyl-L-tyrosine addition of phenylhydrazides shortened the lag period, indicating that they acted as reducing agents, converting N-acetyl-L-dopaquinone to N-acetyl-L-dopa. In HPLC analysis of the oxidation 4-tert-butylcatechol and the phenylhydrazide of Boc-tryptophan only the N-protected amino acid and 4-tert-butyl-o-benzoquinone were detected as final products. In the presence of the natural substrates the oxidation of amino acid phenylhydrazides required much smaller amounts of the enzyme and was up to 40 times faster than the reaction carried out without these compounds. These results demonstrate that tyrosinase can oxidize phenylhydrazides indirectly through o-quinones. This reaction explains the inhibitory effect of agaritine, a natural amino acid hydrazide, on melanin formation and the inhibitory effects of other hydrazine derivatives on tyrosinase described in the literature.  相似文献   

2.
The kinetics of the oxidation of D-galacturonic acid by vanadium(V) in acid solution have been studied. The reaction is of the first order with respect to both vanadium(V) and the organic substrate. Formic acid and oxovanadium(IV) are the final reaction products. The reaction rate is increased with increasing acidity, suggesting that variously protonated vanadium(V) species are active in the substrate oxidation.  相似文献   

3.
Homovanillic acid is the most extensively employed reagent for the fluorometric detection of peroxidase. However, the assays based on the determination of the oxidation product of homovanillic acid do not allow a selective detection of the enzyme, because chemical or physical factors can interfere with the fluorometric determination. The aim of this work was to verify if other enzymatic or non-enzymatic systems might catalyze the homovanillic acid oxidation. The reaction was investigated by spectrophotometric and fluorometric assays; HPLC analysis was used to separate homovanillic acid from its oxidation product and to obtain information on the oxidation process. The results obtained showed that soybean lipoxygenase in the presence of hydrogen peroxide can oxidize homovanillic acid with the formation, by an o,o'-biphenyl linkage, of the corresponding dimer as the sole reaction product. The reaction followed Michaelis-Menten kinetics, for both homovanillic acid and hydrogen peroxide. Other systems, such as cytochrome c/H(2)O(2) and Fenton reagents, were also able to oxidize homovanillic acid to its dimer. It can be affirmed that possible interference by other oxidative systems - that could be present in the biological materials tested - should be considered in assays of peroxidase activity based on the detection of the dimer of homovanillic acid.  相似文献   

4.
Both ascorbic acid and copper were strong prooxidants in the oxidation of linoleate in a buffered (pH 7.0) aqueous dispersion at 37 degrees C. Minimum concentrations at which catalytic activity was detected were 1.3 x 10(-7) m for copper and 1.8 x 10(-6) m for ascorbic acid. For concentrations up to 10(-3) m, the increase in rate of oxidation with increase in concentration of catalyst was greater for ascorbic acid than for copper. Ascorbic acid had maximum catalytic activity at 2.0 x 10(-3) m, but was still prooxidant at the highest concentration tested (5.0 x 10(-2) m). Dehydroascorbic acid was a weaker prooxidant than ascorbic acid. Further degradation products of ascorbic acid were not prooxidant. In early stages of the oxidation autocatalytic behavior was observed with copper, but not with ascorbic acid. Ascorbic acid functioned as a true catalyst, i.e., it accelerated the reaction but it was not oxidized simultaneously with the linoleate. It is proposed that the dehydroascorbic acid radical initiates the linoleate oxidation reaction.  相似文献   

5.
Protein thiol oxidation and modification by nitric oxide and glutathione are emerging as common mechanisms to regulate protein function and to modify protein structure. Also, thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. We assessed the effect of the oxidants hypochlorous acid and chloramines on the cytoskeletal protein tubulin. Total cysteine oxidation by the oxidants was monitored by labeling tubulin with the thiol-selective reagent 5-iodoacetamidofluorescein; by reaction with Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid); and by detecting interchain tubulin disulfides by Western blot under nonreducing conditions. Whereas HOCl induced both cysteine and methionine oxidation of tubulin, chloramines were predominantly cysteine oxidants. Cysteine oxidation of tubulin, rather than methionine oxidation, was associated with loss of microtubule polymerization activity, and treatment of oxidized tubulin with disulfide reducing agents restored a considerable portion of the polymerization activity that was lost after oxidation. By comparing the reactivity of hypochlorous acid and chloramines with the previously characterized oxidants, peroxynitrite and the nitroxyl donor Angeli's salt, we have identified tubulin thiol oxidation, not methionine oxidation or tyrosine nitration, as a common outcome responsible for decreased polymerization activity.  相似文献   

6.
Highly purified sarcolemmal membranes prepared from bovine heart muscle produced superoxide radicals, especially when incubated with NADPH or NADH, as revealed by the oxidation of adrenaline to adrenochrome. The reaction was inhibited by superoxide dismutase or by heat denaturation of the sarcolemmal vesicles. Less evident was the inhibitory effect shown by catalase, while mannitol, deferoxamine or dicumarol were uneffective. The formation of adrenochrome was an oxygen-dependent reaction with a Km for adrenaline of 8-10 microM. Moreover, the reaction was inhibited by preincubating the sarcolemmal membranes with propranolol, while the alpha-antagonist phentolamine was without effect. Adrenaline oxidation was unaffected by the presence of exogenous linolenic acid or methylarachidonic acid, while arachidonic acid, with a Km for this reaction of 175 microM, showed a marked stimulatory effect. This activation was suppressed by superoxide dismutase, catalase and NaCN, while mannitol was without effect. Moreover, the reaction was blocked by the cyclooxygenase inhibitor indomethacin, differently from the lipooxygenase inhibitor nordihydroguaiaretic acid. Also, the incubation of the sarcolemmal vesicles with phospholipase A2 and calcium produced a stimulation of adrenochrome formation which was partially suppressed by albumin. In the experiments using arachidonic acid or phospholipase A2, the addition of indomethacin blocked the adrenaline oxidation. These results indicate that arachidonic acid accentuated the heart sarcolemmal adrenochrome formation presumably by participating in the cyclooxygenase reaction.  相似文献   

7.
An enzyme system from Datura innoxia roots oxidizing formylphenylacetic acid ethyl ester was purified 38-fold by conventional methods such as (NH4)2SO4 fractionation, negative adsorption on alumina Cy gel and chromatography on DEAE-cellulose. The purified enzyme was shown to catalyse the stoicheiometric oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid, utilizing molecular O2. Substrate analogues such as phenylacetaldehyde and phenylpyruvate were oxidized at a very low rate, and formylphenylacetonitrile was an inhilating agents, cyanide, thiol compounds and ascorbic acid. This enzyme was identical with an oxidase-peroxidase isoenzyme. Another oxidase-peroxidase isoenzyme which separated on DEAE-chromatography also showed formylphenylacetic acid ethyl ester oxidase activity, albeit to a lesser extent. The properties of the two isoenzymes of the oxidase were compared and shown to differ in their oxidation and peroxidation properties. The oxidation of formylphenylacetic acid ethyl ester was also catalysed by horseradish peroxidase. The Datura isoenzymes exhibited typical haemoprotein spectra. The oxidation of formylphenylacetic acid ethyl ester was different from other peroxidase-catalysed reactions in not being activated by either Mn2+ or monophenols. The oxidation was inhibited by several mono- and poly-phenols and by catalase. A reaction mechanism for the oxidation is proposed.  相似文献   

8.
Ascorbic acid is a strong inhibitor of indole-3-acetic oxidation catalyzed by commercial horse-radish peroxidase. In the presence of excess ascorbic acid, the indole-acetic acid oxidation catalysis is apparently blocked. The activity of peroxidase for indoleacetic acid at pH 3.7 and 33°C, in the presence of 2,4-dichlorophenol and MnCl2 as promotors was measured by polarographic technique. The Km was 0.27 m M and the maximum velocity was 1.02 mmol O2 (mg protein)−1 min−1. Dixon plots lead to an apparent Ki of 1.25 (μ M for ascorbic acid and the inhibition was apparently competitive. Ascorbic acid, besides appearing to be a strong inhibitor of the IAA oxidase activity of peroxidase, seemed to protect IAA from total degradation. Addition of more than 5 μ M ascorbic acid produced both an exponential increase in the lag time before the onset of reaction and, at the end, an oxidation protection of 26 μ M IAA when 111 μ M IAA was present at the stawrt. The possibility of ascorbic acid-IAA auxin from endogenous oxidation in plants, is proposed.  相似文献   

9.
Anisic acid (p-methoxybenzoic acid) was characterized as a tyrosinase inhibitor from ani-seed, a common food spice. It inhibited the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by tyrosinase with an IC50 of 0.60 mM. The inhibition of tyrosinase by anisic acid is a reversible reaction with residual enzyme activity. This phenolic acid was found to be a classical noncompetitive inhibitor and the inhibition constant K(I) was obtained as 0.603 mM. Anisic acid also inhibited the hydroxylation of L-tyrosine catalyzed by tyrosinase. The lag phase caused by the monophenolase activity was lengthened and the steady-state activity of the enzyme was decreased by anisic acid.  相似文献   

10.
NADH oxidation by manganese peroxidase (MnP) was done in a reaction mixture including either alpha-hydroxy acid or acetate. The oxidation in the former reaction mixture was inhibited by a catalase and was accelerated by exogenous H2O2, while the oxidation in the latter reaction mixture was inhibited by a superoxide dismutase and was not accelerated by the exogenous H2O2. These results indicated that there are significant differences between the two reaction systems, particularly, in the active oxygen species involved in the reactions. Additionally, the experiment of MnP reduction with Mn(II) suggests that MnP has a separate catalytic activity other than an oxidation of Mn(II) to Mn(III) in the reaction mixture including acetate.  相似文献   

11.
An improved method for identifying 8-O-acetyl-N-acetylneuraminic acid   总被引:1,自引:0,他引:1  
The periodic acid/thionin-Schiff/potassium hydroxide/periodic acid/fuchsin-Schiff sequence developed by Culling et al. frequently causes damage to sections and gives inconsistent results because of insufficient primary oxidation and difficulties in making the thionin-Schiff reagent. These disadvantages have been largely eliminated by more thorough primary oxidation and by replacing the original thionin-Schiff with a new cold thionin-Schiff. The effect of alkaline hydrolysis on thionin-aldehyde complexes was also studied and the reduction of color caused by this treatment was restored by a second thionin-Schiff reaction. The new sequence gives consistent results and imparts greater color to the thionin-Schiff reaction.  相似文献   

12.
An enzyme electrode was prepared with acid phosphatase (ACP) for development of a new electric power generation system using ascorbic acid 2-phosphate (AA2P) as a fuel. The properties of the electrode were investigated with respect to biocatalytic dephosphorylation of AA2P and electrochemical oxidation of resulting ascorbic acid (AA). The enzyme electrode was fabricated by immobilization of ACP through amide linkage onto a self-assembled monolayer of 3-mercaptopropionic acid on a gold electrode. AA2P was not oxidized on a bare gold electrode in the potential sweep range from -0.1 to +0.5 V vs. Ag/AgCl. However, the enzyme electrode gave an oxidation current in citric buffer solution of pH 5 containing 10 mM of AA2P. The oxidation current began to increase at +0.2V, and reached to 5.0 μA cm(-2) at +0.5 V. The potential +0.2 V corresponded to the onset of oxidation of ascorbic acid (AA). These results suggest that the oxidation current observed with the enzyme electrode is due to AA resulting from dephosphorylation of AA2P. The oxidation current increased with increasing concentration of AA2P and almost leveled off at around the concentration of 5mM. Thus the enzyme electrode brought about biocatalytic conversion of AA2P to AA, followed by electrochemical oxidation of the AA. The oxidation current is likely to be controlled by the biocatalytic reaction.  相似文献   

13.
An effective synthesis of 4,4 dimethyl-cholest-8,14,24-trien-3beta-ol (FF-MAS) from lithocholic acid is described, utilising a double oxidation and regioselective Wittig reaction as key steps.  相似文献   

14.
The oxidase-peroxidase from Datura innoxia which catalyses the oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid was also found to catalyse the oxidation of NADH in the presence of Mn2+ and formylphenylacetic acid ethyl ester. NADH was not oxidized in the absence of formylphenylacetic acid ethyl ester, although formylphenylacetonitrile or phenylacetaldehyde could replace it in the reaction. The reaction appeared to be complex and for every mol of NADH oxidized 3-4 g-atoms of oxygen were utilized, with a concomitant formation of approx. 0.8 mol of H2O2, the latter being identified by the starch-iodide test and decomposition by catalase. Benzoylformic acid ethyl ester was also formed in the reaction, but in a nonlinear fashion, indicating a lag phase. In the absence of Mn2+, NADH oxidation was not only very low, but itself inhibited the formation of benzoylformic acid ethyl ester from formylphenylacetic acid ethyl ester. A reaction mechanism for the oxidation of NADH in the presence of formylphenylacetic acid ethyl ester is proposed.  相似文献   

15.
Ferrylmyoglobin-catalyzed linoleic acid peroxidation   总被引:1,自引:0,他引:1  
The addition of linoleic acid (18:2) to a solution containing oxymyoglobin (MbIIO2), metmyoglobin (MbIII), or metmyoglobin-azide complex (MbIII-N3-) resulted in the formation of a common complex with identical absorption spectral properties. The addition of H2O2 to a MbIII/linoleic acid mixture revealed a spectral profile with lambda max at 530 nm and different from that observed in the reaction of MbIII with H2O2 and identical to that of ferrylmyoglobin. This was accompanied by a progressive decrease in the absorption in the visible region, indicating heme degradation during the lipid peroxidation process. The oxidation products of linoleic acid during the MbIII/18:2/H2O2 interaction were assessed by HPLC under anaerobic and aerobic conditions. In both instances, the chromatograms at lambda 234 nm revealed the formation of a main peak with a retention time of 11.1 min, which cochromatographed with a standard of 9-hydroperoxide of linoleic acid. The latter adduct was not degraded by the oxoferryl complex of myoglobin. The conclusions originating from this research are two-fold. On the one hand, the identical spectral properties exhibited by the product originating from the reaction of either MbIIO2 or MbIII with linoleic acid bridge the apparent discrepancy between the different reactivities of MbIIO2 and MbIII toward H2O2 and their ability to promote lipid peroxidation. On the other hand, the pattern of oxidation products of linoleic acid observed during the MbIII/H2O2 interaction, i.e., the formation of a 9-hydroperoxide adduct as a major product, points to a specific binding character and a regioselectivity of the oxoferryl complex in the oxidation of unsaturated fatty acids or a catalytic preference for decomposition of the various isomeric hydroperoxides over that of the 9-hydroperoxide.  相似文献   

16.
Salicylic acid slightly inhibited the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by mushroom tyrosinase noncompetitively without being oxidized. In contrast, 4-hydroxybenzoic acid did not inhibit this enzymatic oxidation if a longer reaction time was observed, although it suppressed the initial rate of the oxidation to a certain extent. Neither acid showed noticeable effects on cultured murine B16-F10 melanoma cells except weak cytotoxicity.  相似文献   

17.
Glucose has been demonstrated to suppress the reaction of deoxyribose in the thiobarbituric acid determination of sialic acid. Suppression occurs at the periodate oxidation step in which glucose apparently competes with deoxyribose. This suppression is augmented by sodium chloride and trichloroacetic acid. With these three substances, deoxyribose reactivity can be completely eliminated at concentrations up to 75 μm with only a 25% decrease in sialic acid reactivity.Mixtures of deoxyribose and sialic acid and hydrolyzed extracts of rat organs gave reaction products with an absorption spectrum closely resembling that given by a sialic acid standard. Provided that the spectral characteristics of the colored product from an unknown sample are verified, sialic acid can be determined directly from absorbance at 550 nm without interference by deoxyribose.  相似文献   

18.
It has been shown on the model of thermic oxidation of oleic acid methyl ether that addition of phosphatidylethanolamine and lisophosphatidylcholine into a developed reaction brings about some regularities which can be accounted for as oxidation of two-substances. It is suggested that phospholipids can be the substrate of radical oxidation of substances in oxidative transformations of lipids in the cell. In this case according to oxidation conditions the same phospholipids can appear either as prooxidants or as antioxidants.  相似文献   

19.
The oxidation mechanism of caffeic acid (CAF) has been studied by means of cyclic voltammetry with the plastic formed carbon or glassy carbon electrode. CAF gives a well-developed two-electron reversible wave in acidic media, whereas it shows an irreversible behavior, i.e., a decrease of the rereduction peak, in less acidic media, suggesting that the oxidation of CAF follows an irreversible chemical reaction(s). Digital simulation analyses based on different oxidation mechanisms have been performed for the voltammograms obtained with the GC electrode in 1:1 (v/v) water:ethanol solutions. The results clearly show that the seeming two-electron oxidation of CAF occurs stepwise via one-electron processes, each of which follows an irreversible chemical reaction. It has also been suggested that the semiquinone radical as an intermediate of the one-electron oxidation should play an important role in the oxidation reaction. Evaluations of the rate constants for the chemical reactions have further suggested that the chemical reactions are dimerization reactions.  相似文献   

20.
The UV absorption method and the thiobarbituric acid (TBA) test for oxidation of an aqueous suspension of linoleate were compared. The absorption method depends on the formation of hydroperoxides having conjugated double bonds that absorb strongly at 233 nm. The absorption at 233 nm increased markedly during oxidation of linoleate catalyzed by either ascorbic acid or cupric ions. The concentration of ascorbic acid in the reaction mixture was also measured by UV absorption at 265 nm and pH 7.0. Color development in the TBA test also increased markedly with the extent of oxidation of linoleate. When ascorbic acid was the catalyst, UV absorption detected early stages of oxidation with greater sensitivity than the TBA test. The reverse was true when Cu(++) was the catalyst. In general, the relation between the two procedures will depend on whether copper is present when the TBA test is made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号