首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells and mitochondria were prepared from the brown adipose tissue of adult guinea-pigs adapted to either 4-7 degrees C or 22-25 degrees C. The cold-adapted cells displayed noradrenaline-stimulated, propranolol-sensitive respiration, but noradrenaline failed to increase the respiration of the warm-adapted cells. Purine-nucleotide-sensitive proton conductance was greater in cold-adapted mitochondria than in warm-adapted controls. At the same time cold-adapted mitochondria were extremely sensitive to the uncoupling effect of endogenous and infused fatty acids, and resembled the mitochondria from the brown adipose tissue of cold-adapted hamsters. Warm-adapted mitochondria were ninefold less sensitive, and resembled liver mitochondria. With cold-adapted, but not warm-adapted mitochondria, respiration increased proportionately to the rate of fatty acid infusion. It is concluded that the presence of the 32000-Mr proton conductance pathway is necessary for the expression of a high sensitivity to fatty acid uncoupling, suggesting that the fatty acids interact directly with this protein to modulate the proton conductance during the acute regulation of thermogenesis.  相似文献   

2.
We previously demonstrated that uncoupling protein 1 activity, as measured in isolated brown adipose tissue mitochondria (and as a native protein reconstituted into liposome membranes), was not activated by the non-flippable modified saturated fatty acid, glucose-O-ω-palmitate, whereas activity was stimulated by palmitate alone (40 nM free final concentration). In this study, we investigated whether fatty acid chain length had any bearing on the ability of glucose-O-ω-fatty acids to activate uncoupling protein 1. Glucose-O-ω-saturated fatty acids of various chain lengths were synthesized and tested for their potential to activate GDP-inhibited uncoupling protein 1-dependent oxygen consumption in brown adipose tissue mitochondria, and the results were compared with equivalent non-modified fatty acid controls. Here we demonstrate that laurate (12C), palmitate (16C) and stearate (18C) could activate GDP-inhibited uncoupling protein 1-dependent oxygen consumption in brown adipose tissue mitochondria, whereas there was no activation with glucose-O-ω-laurate (12C), glucose-O-ω-palmitate (16C), glucose-O-ω-stearate (18C), glucose-O-ω-arachidate (20C) or arachidate alone. We conclude that non-flippable fatty acids cannot activate uncoupling protein 1 irrespective of chain length. Our data further undermine the cofactor activation model of uncoupling protein 1 function but are compatible with the model that uncoupling protein 1 functions by flipping long-chain fatty acid anions.  相似文献   

3.
Fatty acids activate the uncoupling protein UCP1 by a still controversial mechanism. Two models have been put forward where the fatty acid operates as either substrate ("fatty acid cycling hypothesis") or prosthetic group ("proton buffering model"). Two sets of experiments that should help to discriminate between the two hypothetical mechanisms are presented. We show that undecanosulfonate activates UCP1 in respiring mitochondria under conditions identical to those required for the activation by fatty acids. Since alkylsulfonates cannot cross the lipid bilayer, these experiments rule out the fatty acid cycling hypothesis as the mechanism of uncoupling. We also demonstrate that without added nucleotides and upon careful removal of endogenous fatty acids, brown adipose tissue (BAT) mitochondria from cold-adapted hamsters respire at the full uncoupled rate. Addition of nucleotides lower the respiratory rate tenfold. The high activity observed in the absence of the two regulatory ligands is an indication that UCP1 displays an intrinsic proton conductance that is fatty acid-independent. We propose that the fatty acid uncoupling mediated by other members of the mitochondrial transporter family probably involves a carrier to pore transition and therefore has little in common with the activation of UCP1.  相似文献   

4.
The ATP/ADP-antiporter inhibitors and the substrate ADP suppress the uncoupling effect induced by low (10-20 microM) concentrations of palmitate in mitochondria from skeletal muscle and liver. The inhibitors and ADP are found to (a) inhibit the palmitate-stimulated respiration in the controlled state and (b) increase the membrane potential lowered by palmitate. The degree of efficiency decreases in the order: carboxyatractylate (CAtr) greater than ADP greater than bongkrekic acid, atractylate. GDP is ineffective, Mg.ADP is of much smaller effect, whereas ATP is effective at much higher concentration than is ADP. Inhibitor concentrations, which maximally suppress the palmitate-stimulated respiration, correspond to those needed for arresting the state 3 respiration. The extent of the CAtr-sensitive stimulation of respiration by palmitate has been found to decrease with an increase in palmitate concentration. Stimulation of the controlled respiration by p-trifluoromethoxycarbonylcyanide phenylhydrozone (FCCP) and gramicidin D at any concentrations of these uncouplers is CAtr-insensitive, whereas that caused by a low concentrations of 2,4-dinitrophenol and dodecyl sulfate is inhibited by CAtr. The above effect of palmitate develops immediately after addition of the fatty acid. It is resistant to EGTA as well as to inhibitors of phospholipase (nupercain) and of lipid peroxidation (ionol). Moreover, palmitate accelerates spontaneous release of the respiratory control, developing in rat liver mitochondria under certain conditions. This effect takes several minutes, being sensitive to EGTA, nupercain and ionol. Like the fast uncoupling, this slow effect is inhibited by ADP but CAtr and atractylate are stimulatory rather than inhibitory. In artificial planar phospholipid membrane, palmitate does not increase the membrane conductance, FCCP increases it strongly and dinitrophenol only slightly. In cytochrome oxidase proteoliposomes, FCCP, gramicidin and dinitrophenol (less effectively) lower, whereas palmitate enhances the cytochrome-oxidase-generated membrane potential. In this system, monensin substitutes for palmitate. It is concluded that the ATP/ADP antiporter is somehow involved in the uncoupling effect caused by low concentrations of palmitate and, partially, of dinitrophenol, whereas uncoupling produced by FCCP and gramicidin is due to their action on the phospholipid part of the mitochondrial membrane. A possible mechanism of this effect is discussed.  相似文献   

5.
6.
The effect of ATP/ADP-antiporter inhibitors on palmitate-induced uncoupling was studied in heart muscle mitochondria and inside-out submitochondrial particles. In both systems palmitate is found to decrease the respiration-generated membrane potential. In mitochondria, this effect is specifically abolished by carboxyatractylate (CAtr) a non-penetrating inhibitor of antiporter. In submitochondrial particles, CAtr does not abolish the palmitate-induced potential decrease. At the same time, bongkrekic acid, a penetrating inhibitor of the antiporter, suppresses the palmitate effect on the potential both in mitochondria and particles. Palmitoyl-CoA which is known to inhibit the antiporter in mitochondria as well as in particles decreases the palmitate uncoupling efficiency in both these systems. These data are in agreement with the hypothesis that the ATP/ADP-antiporter is involved in the action of free fatty acids as natural uncouplers of oxidative phosphorylation.  相似文献   

7.
Brown fat is a thermogenic organ that allows newborns and small mammals to maintain a stable body temperature when exposed to cold. The heat generation capacity is based on the uncoupling of respiration from ATP synthesis mediated by the uncoupling protein UCP1. The first studies on the properties of these mitochondria revealed that fatty acid removal was an absolute prerequisite for respiratory control. Thus fatty acids, that are substrate for oxidation, were proposed as regulators of respiration. However, their ability to uncouple all types of mitochondria and the demonstration that several mitochondrial carriers catalyze the translocation of the fatty acid anion have made them unlikely candidates for a specific role in brown fat. Nevertheless, data strongly argue for a physiological function. First, fatty acids mimic the noradrenaline effects on adipocytes. Second, there exists a precise correlation between fatty acid sensitivity and the levels of UCP1. Finally, fatty acids increase the conductance by facilitating proton translocation, a mechanism that is distinct from the fatty acid uncoupling mediated by other mitochondrial carriers. The regulation of UCP1 and UCP2 by retinoids and the lack of effects of fatty acids on UCP2 or UCP3 are starting to set differences among the new uncoupling proteins.  相似文献   

8.
Uncoupling proteins, members of the mitochondrial carrier family, are present in mitochondrial inner membrane and mediate free fatty acid-activated, purine-nucleotide-inhibited H+ re-uptake. Since 1995, it has been shown that the uncoupling protein is present in many higher plants and some microorganisms like non-photosynthetic amoeboid protozoon, Acanthamoeba castellanii and non-fermentative yeast Candida parapsilosis. In mitochondria of these organisms, uncoupling protein activity is revealed not only by stimulation of state 4 respiration by free fatty acids accompanied by decrease in membrane potential (these effects being partially released by ATP and GTP) but mainly by lowering ADP/O ratio during state 3 respiration. Plant and microorganism uncoupling proteins are able to divert very efficiently energy from oxidative phosphorylation, competing for deltamicroH+ with ATP synthase. Functional connection and physiological role of uncoupling protein and alternative oxidase, two main energy-dissipating systems in plant-type mitochondria, are discussed.  相似文献   

9.
The time-course for the induction of the uncoupling pathway in the inner membrane of brown-fat mitochondria from cold-adapting guinea pigs was studied. The amount of the protein was quantified from the capacity for high-affinity binding of GDP to the intact mitochondria, and was compared with the functional parameters diagnostic of the protein, namely the nucleotide-sensitive proton conductance and the sensitivity to uncoupling by low concentrations of fatty acids. A monophasic increase in nucleotide titre was observed, with no evidence of an early 'unmasking' of preexisting nucleotide-binding sites. The nucleotide-sensitive conductance increased in precise synchrony with the nucleotide-binding capacity. Mitochondria from newborn animals, and those from acutely cold-adapted animals, showed anomalously low sensitivities to uncoupling by fatty acids.  相似文献   

10.
The physiological role of mitochondrial uncoupling proteins (UCPs) in heart and skeletal muscle is unknown, as is whether mitochondrial uncoupling of oxidative phosphorylation by fatty acids occurs in vivo. In this study, we found that UCP2 and UCP3 protein content, determined using Western blotting, was increased by 32 and 48%, respectively, in hyperthyroid rat heart mitochondria. Oligomycin-insensitive respiration rate, a measure of mitochondrial uncoupling, was increased in all mitochondria in the presence of palmitate: 36% in controls and 71 and 100% with 0.8 and 0.9 mM palmitate, respectively, in hyperthyroid rat heart mitochondria. In the isolated working heart, 0.4 mM palmitate significantly lowered cardiac output by 36% and cardiac efficiency by 38% in the hyperthyroid rat heart. Thus increased mitochondrial UCPs in the hyperthyroid rat heart were associated with increased uncoupling and decreased myocardial efficiency in the presence of palmitate. In conclusion, a physiological effect of UCPs on fatty acid oxidation has been found in heart at the mitochondrial and whole organ level.  相似文献   

11.
A number of reports indicate that a long-chain free fatty acid export system may be operating in mitochondria. In this study, we sought evidence of its existence in rat heart mitochondria. To determine its potential role, we also sought evidence of its activation or inhibition in streptozotocin (STZ)-induced diabetic rat heart mitochondria. If confirmed, it could be a novel mechanism for regulation of long-chain fatty acid oxidation (FAO) in mitochondria. To obtain evidence of its existence, we tested whether heart mitochondria presented with palmitoyl-carnitine can generate and export palmitate. We found that intact mitochondria indeed generate and export palmitate. We have also found that the rates of these processes are markedly higher in STZ-diabetic rat heart mitochondria, in which palmitoyl-carnitine oxidation is also increased. Since mitochondrial thioesterase-1 (MTE-1) hydrolyzes acyl-CoA to CoA-SH + free fatty acid, and uncoupling protein-3 (UCP-3), reconstituted in liposomes, transports free fatty acids, we examined whether these proteins are also increased in STZ-diabetic rat heart mitochondria. We found that both of these proteins are indeed increased. Gene expression profile analysis revealed striking expression of mitochondrial long-chain fatty acid transport and oxidation genes, accompanying overexpression of MTE-1 and UCP-3 in STZ-diabetic rat hearts. Our findings provide the first direct evidence for the existence of a long-chain free fatty acid generation and export system in mitochondria and its activation in STZ-diabetic rat hearts in which FAO is enhanced. We suggest that its activation may facilitate, and inhibition may limit, enhancement of FAO. fatty acid oxidation; diabetes; lipotoxic cardiomyopathy; gene array  相似文献   

12.

Background  

The development of chilling and freezing injury symptoms in plants is known to frequently coincide with peroxidation of free fatty acids. Mitochondria are one of the major sources of reactive oxygen species during cold stress. Recently it has been suggested that uncoupling of oxidation and phosphorylation in mitochondria during oxidative stress can decrease ROS formation by mitochondrial respiratory chain generation. At the same time, it is known that plant uncoupling mitochondrial protein (PUMP) and other UCP-like proteins are not the only uncoupling system in plant mitochondria. All plants have cyanide-resistant oxidase (AOX) whose activation causes an uncoupling of respiration and oxidative phosphorylation. Recently it has been found that in cereals, cold stress protein CSP 310 exists, and that this causes uncoupling of oxidation and phosphorylation in mitochondria.  相似文献   

13.
Rapid, unidirectional Ca2+ influx was examined in isolated brown adipocytes by short incubations (30 s) with 45Ca2+. Ca2+ uptake was found to be large in the resting brown adipocyte, but was markedly inhibited when the cells were presented with norepinephrine. Specific alpha 1-adrenergic stimulation was without effect on Ca2+ uptake. The effect of norepinephrine (which had an EC50 of 140 nM) could be inhibited by beta-adrenergic blockade and could be mimicked by forskolin (an adenylate cyclase activator) and theophylline (a phosphodiesterase inhibitor). Exogenous free fatty acids such as octanoate and palmitate (classical stimulators of respiration in brown adipocytes) were also able to dramatically inhibit Ca2+ uptake by the cells. The artificial mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) induced a large reduction in cellular Ca2+ uptake (even in the presence of the ATPase inhibitor oligomycin), and in the presence of FCCP the inhibitory effect of norepinephrine on Ca2+ uptake was significantly reduced. The effect of beta-adrenergic stimulation on Ca2+ uptake was not directly caused by the large increase in respiration that occurs in response to norepinephrine because the respiratory inhibitor rotenone did not affect the Ca2+ response of the cells to the hormone. The evidence suggests that beta-adrenergic stimulation of brown adipocyte metabolism leads to a partial inhibition of Ca2+ uptake into the mitochondrial Ca2+ pool and we discuss the possibility that this represents the effect of a reduced membrane potential (and thus reduced Ca2+ uniport activity) in the partially uncoupled mitochondria of the thermogenically active brown adipocyte.  相似文献   

14.
This study deals with mitochondrial energy efficiency in liver and skeletal muscle mitochondria in 15 days cold exposed rats. Cold exposure strongly increases the sensitivity to uncoupling by added palmitate of skeletal muscle but not liver mitochondria, while mitochondrial energy coupling in the absence of fatty acids is only slightly affected by cold in liver and skeletal muscle. In addition, uncoupling protein 3 content does not follow changes in skeletal muscle mitochondrial coupling. It is therefore concluded that skeletal muscle could play a direct thermogenic role based on fatty acid-induced mild uncoupling of mitochondrial oxidative phosphorylation.  相似文献   

15.
In mitoplasts, respiratory stimulation by ADP, palmitate, DNP and CCCP and sensitivity of respiration to carboxyatractylate are considerably less pronounced than in mitochondria. Addition of porin-containing preparations (purified outer membranes or solubilized mitochondrial porin) to mitoplasts results in partial restoration of the oxygen consumption and sensitivity to carboxyatractylate (CAT). The uncoupling effect of FCCP in mitoplasts is CAT-resistant and does not depend on added porin. It is suggested that mitochondrial porin may be a natural activator of ADP/ATP antiporter and succinate carrier in mitochondria.  相似文献   

16.
To examine the thermogenic significance of the classical uncoupling protein-1 (UCP1), the thermogenic potential of brown adipocytes isolated from UCP1-ablated mice was investigated. Ucp1(-/-) cells had a basal metabolic rate identical to wild-type; the mitochondria within them were coupled to the same degree. The response to norepinephrine in wild-type cells was robust ( approximately 10-fold increase in thermogenesis); Ucp1(-/-) cells only responded approximately 3% of this. Ucp1(-/-) cells were as potent as wild-type in norepinephrine-induced cAMP accumulation and lipolysis and had a similar mitochondrial respiratory complement. In wild-type cells, fatty acids induced a thermogenic response similar to norepinephrine, but fatty acids (and retinoate) were practically without effect in Ucp1(-/-) cells. It is concluded that no other adrenergically induced thermogenic mechanism exists in brown adipocytes except that mediated by UCP1 and that entopic expression of UCP1 does not lead to overt innate uncoupling, and it is suggested that fatty acids are transformed to an intracellular physiological activator of UCP1. High expression of UCP2 and UCP3 in the tissue was not associated with an overt innate highly uncoupled state of mitochondria within the cells, nor with an ability of norepinephrine or endo- or exogenous fatty acids to induce uncoupled respiration in the cells. Thus, UCP1 remains the only physiologically potent thermogenic uncoupling protein in these cells.  相似文献   

17.
The ultrastructural characteristics of the inguinal, interscapular, and perirenal adipose tissue in kittens and cats were studied. There were no qualitative differences among adipocytes in the three anatomical areas. The only recorded difference was in the amount of lipids stored in the adipocytes in younger stages. Immediately after birth lipids occupied 25% of the volume in the inguinal area, 15% in interscapular fat tissue, and 10% in perirenal fat tissue. At this stage the adipose tissue morphologically resembled brown adipose tissue (BAT) of rodents. Two weeks after birth, lipids accumulated and adipocytes in the inguinal area became unilocular and appeared similar to white adipose tissue (WAT). A similar transition occurred approx 25 days after birth in interscapular fat and approx 6 weeks after birth in the perirenal area. No morphological signs of any cell degradation or destruction, nor any increased activity of preadipocytes, were seen during this conversion from BAT-like to WAT-like adipose tissue. The conversion of the adipose tissue was correlated with a decrease in vascularization and innervation, a loss of intercellular connections, and a changed mitochondrial population. Mitochondria in multilocular adipocytes resembled those in typical BAT which contain uncoupling protein (“UC-mitochondria”). After conversion to unilocular adipocytes the amount of mitochondria was halved, their cristae even more reduced, and their appearance was of a WAT-type (UCP-lacking mitochondria, which are coupled under physiological conditions; “C-mitochondria”). Since this category of adipose tissue differs from both typical brown and white adipose tissue, the name “convertible adipose tissue” (CAT) is proposed. Apparently adipose tissue from comparatively large mammals is of this convertible type.  相似文献   

18.
Long-chain nonesterified ("free") fatty acids (FFA) can affect the mitochondrial generation of reactive oxygen species (ROS) in two ways: (i) by depolarisation of the inner membrane due to the uncoupling effect and (ii) by partly blocking the respiratory chain. In the present work this dual effect was investigated in rat heart and liver mitochondria under conditions of forward and reverse electron transport. Under conditions of the forward electron transport, i.e. with pyruvate plus malate and with succinate (plus rotenone) as respiratory substrates, polyunsaturated fatty acid, arachidonic, and branched-chain saturated fatty acid, phytanic, increased ROS production in parallel with a partial inhibition of the electron transport in the respiratory chain, most likely at the level of complexes I and III. A linear correlation between stimulation of ROS production and inhibition of complex III was found for rat heart mitochondria. This effect on ROS production was further increased in glutathione-depleted mitochondria. Under conditions of the reverse electron transport, i.e. with succinate (without rotenone), unsaturated fatty acids, arachidonic and oleic, straight-chain saturated palmitic acid and branched-chain saturated phytanic acid strongly inhibited ROS production. This inhibition was partly abolished by the blocker of ATP/ADP transfer, carboxyatractyloside, thus indicating that this effect was related to uncoupling (protonophoric) action of fatty acids. It is concluded that in isolated rat heart and liver mitochondria functioning in the forward electron transport mode, unsaturated fatty acids and phytanic acid increase ROS generation by partly inhibiting the electron transport and, most likely, by changing membrane fluidity. Only under conditions of reverse electron transport, fatty acids decrease ROS generation due to their uncoupling action.  相似文献   

19.
The respiration rate of liver mitochondria in the course of succinate oxidation depends on temperature in the presence of palmitate more strongly than in its absence (in state 4). In the Arrhenius plot, the temperature dependence of the palmitate-induced stimulation of respiration has a bend at 22°C which is characterized by transition of the activation energy from 120 to 60 kJ/mol. However, a similar dependence of respiration in state 4 is linear over the whole temperature range and corresponds to the activation energy of 17 kJ/mol. Phosphate partially inhibits the uncoupling effect of palmitate. This effect of phosphate is increased on decrease in temperature. In the presence of phosphate the temperature dependence in the Arrhenius plot also has a bend at 22°C, and the activation energy increases from 128 to 208 kJ/mol in the range from 13 to 22°C and from 56 to 67 kJ/mol in the range from 22 to 37°C. Mersalyl (10 nmol/mg protein), an inhibitor of the phosphate carrier, similarly to phosphate, suppresses the uncoupling effect of laurate, and the effects of mersalyl and phosphate are not additive. The recoupling effects of phosphate and mersalyl seem to show involvement of the phosphate carrier in the uncoupling effect of fatty acids in liver mitochondria. Possible mechanisms of involvement of the phosphate carrier in the uncoupling effect of fatty acids are discussed.  相似文献   

20.
It is shown that upon oxidation of succinate in the presence of rotenone and antioxidant Trolox (or pyruvate) in liver mitochondria of mature rats (9–12-month old) the respiration stimulated by palmitate is suppressed by ADP (the substrate of ADP/ATP-antiporter) and aspartate (the substrate of aspartate/glutamate antiporter). However, it was found that in the presence of the oxidative agent tert-butylhydroperoxide neither ADP nor aspartate is effective even at their joint action. In the presence of ADP and aspartate, uncoupling activity of palmitate is minimal, since the lipid peroxidation is inhibited by Trolox or pyruvate, and rises as the accumulation rate of conjugated dienes increases, reaching the maximal value at the oxidative stress caused by tert-butylhydroperoxide. In liver mitochondria of senile rats (22–26-month old) at high intensity of lipid peroxidation, ADP and aspartate do not affect the uncoupling activity of palmitate (Samartsev and Kozhina, 2008, Biochemistry (Mosc.), vol. 73, no. 7, pp. 783–790). Comparative studies have shown that in liver mitochondria of mature and senile rats at the similar accumulation rate of the conjugated dienes in the presence of ADP and aspartate, the uncoupling activity of palmitate reaches the same level relative to the maximal activity. We conclude that an enhancement of free radical reactions and lipid peroxidation in liver mitochondria can result in an increase of protonophore uncoupling activity of fatty acids with the involvement of ADP/ATP- and aspartate/glutamate antiporters due to the suppression of the ability of physiological substrates of these carriers of ADP and aspartate to inhibit the uncoupling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号