首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aromatic amino acid aminotransferase was purified to a homogenous state from a gramicidin S-producing strain of Bacillus brevis. The enzyme shows a molecular weight of about 71,000 on gel-filtration. The subunit molecular weight is about 35,000 as determined by sodium dodecyl sulfate gel electrophoresis, indicating that the enzyme is a dimer. The enzyme exhibits absorption maxima near 425 and 330 nm at neutral pH. One mole of pyridoxal phosphate is bound per subunit. The enzyme has amino donor specificity for aromatic amino acids, L-phenylalanine, L-tyrosine, and L-tryptophan, and utilizes 2-oxoglutarate as the amino acceptor. This enzyme activity was separated from both the aspartate aminotransferase activity and the branched chain amino acid aminotransferase activity by chromatography on DEAE-Sephadex.  相似文献   

2.
An Escherichia coli K12 strain was constructed that synthesized elevated quantities of Klebsiella aerogenes D-arabitol dehydrogenase; the enzyme accounted for about 5% of the soluble protein in this strain. Some 280 mg of enzyme was purified from 180 g of cell paste. The purified enzyme was active as a monomer of 46,000 mol.wt. The amino acid composition and kinetic constants of the enzyme for D-arabitol and D-mannitol are reported. The apparent Km for D-mannitol was more than 3-fold that for D-arabitol, whereas the maximum velocities with both substrates were indistinguishable. The enzyme purified from the E. coli K12 construct was indistinguishable by the criteria of molecular weight, electrophoretic mobility in native polyacrylamide gel and D-mannitol/D-arabitol activity ratio from D-arabitol dehydrogenase synthesized in wild-type K. aerogenes. Purified D-arabitol dehydrogenase showed no immunological cross-reaction with K. aerogenes ribitol dehydrogenase. During electrophoresis in native polyacrylamide gels, oxidation by persulphate catalysed the formation of inactive polymeric forms of the enzyme. Dithiothreitol and pre-electrophoresis protected against this polymerization.  相似文献   

3.
Aspartate: 2-oxoglutarate aminotransferase from the anaerobic protozoon Trichomonas vaginalis was purified to homogeneity and characterized. It is a dimeric protein of overall Mr approx. 100000. Only a single isoenzyme was found in T. vaginalis. The overall molecular and catalytic properties have features in common with both the vertebrate cytoplasmic and mitochondrial isoenzymes. The purified aspartate aminotransferase from T. vaginalis showed very high rates of activity with aromatic amino acids as donors and 2-oxoglutarate as acceptor. This broad-spectrum activity was restricted to aromatic amino acids and aromatic 2-oxo acids, and no significant activity was seen with other common amino acids, other than with the substrates and products of the aspartate: 2-oxoglutarate aminotransferase reaction. Co-purification and co-inhibition, by the irreversible inhibitor gostatin, of the aromatic amino acid aminotransferase and aspartate aminotransferase activities, in conjunction with competitive substrate experiments, strongly suggest that a single enzyme is responsible for both activities. Such high rates of aromatic amino acid aminotransferase activity have not been reported before in eukaryotic aspartate aminotransferase.  相似文献   

4.
Ribitol dehydrogenase has been purified to homogeneity from several strains of Klebsiella aerogenes. One strain yields 3-6g of pure enzyme from 1kg of cells. The enzyme is a tetramer of four subunits, mol.wt. 27000. Preliminary studies of the activity of the enzyme are reported. Peptide ;maps' together with the amino acid composition indicate that the subunits are identical.  相似文献   

5.
Histidine decarboxylases from Klebsiella planticola and Enterobacter aerogenes were purified to homogeneity and compared with the histidine decarboxylase from Morganella morganii. All three enzymes required pyridoxal 5'-phosphate as a coenzyme, showed optimal activity at pH 6.5, decarboxylated only histidine among the amino acids derived from protein, and were tetramers or dimers of identical subunits. Amino-terminal sequences of the three enzymes showed up to 81% homology through residue 33, but the enzymes differed sufficiently in amino acid composition and sequence so that no cross-reaction occurred between the K. planticola or E. aerogenes enzymes and antibodies to the decarboxylase from M. morganii. All three enzymes were inhibited by carbonyl reagents; by amino-, carboxyl-, and some methyl-substituted histidines; and by alpha-fluoromethylhistidine. These decarboxylases, all from gram-negative organisms, differed greatly in subunit structure, biogenesis, and other properties from the pyruvoyl-dependent histidine decarboxylases from gram-positive organisms described previously.  相似文献   

6.
The most abundant aromatic amino acid aminotransferase of Rhizobium leguminosarum biovar trifolii was partially purified. The molecular mass of the enzyme was estimated to be 53 kDa by gel filtration. The enzyme transaminated aromatic amino acids and histidine. It used aromatic keto acids and alpha-ketoglutaric and oxalacetic acids as amino-group acceptors. The optimum temperature was 35 degrees C. Using phenylalanine and alpha-ketoglutaric acid as substrates the activation energy was 46.2 kJ.mol-1 and for the couple tryptophan:alpha-ketoglutaric acid it was 70.3 kJ.mol-1. The optimum pH was different for each substrate: 7.3 for phenylalanine, 7.9 for histidine and 8.7 for tryptophan.  相似文献   

7.
1. The respiratory nitrate reductase of Klebsiella aerogenes was solubilized from the bacterial membranes by deoxycholate and purified further by means of gel chromatography in the presence of deoxycholate, and anion-exchange chromatography. 2. Dependent on the isolation procedure two different homogeneous forms of the enzyme, having different subunit compositions, can be obtained. These forms are designated nitrate reductase I and nitrate reductase II. Both enzyme preparations are isolated as tetramers having sedimentation constants (s20,w) of 22.1 S and 21.7 S for nitrate reductase I and II, respectively. The nitrate reductase I tetramer has a molecular weight of about 106. 3. In the presence of deoxycholate both enzyme preparations dissociate reversibly into their respective monomeric forms. The monomeric form of nitrate reductase I has a molecular weight of about 260 000 and a sedimentation constant of 9.8 S. For nitrate reductase II these values are 180 000 and 8.5 S, respectively. 4. Nitrate reductase I consists of three different subunits, having molecular weights of 117 000; 57 000 and 52 000, which are present in a 1:1:2 molar ratio, respectively. Nitrate reductase II contains only the subunits with a molecular weight of 117 000 and 57 000 in a equimolar ratio. 5. Treatment at pH 9.5 in the presence of deoxycholate and 0.05 M NaCl or ageing removes the 52 000 Mr subunit from nitrate reductase I. This smallest subunit, in contrast to the other subunits, is a basic protein. 6. The 52 000 Mr subunit has no catalytic function in the intramolecular electron transfer from reduced benzylviologen to nitrate. However, it appears to have a structural function since nitrate reductase II, which lacks this subunit, is much more labile than nitrate reductase I. Inactivation of nitrate reductase II can be prevented by the presence of deoxycholate. 7. The spectrum of the enzyme resembles that of iron-sulfur proteins. No cytochromes or contaminating enzyme activities are present in the purified enzyme. Only reduced benzylviologen was found to be capable of acting as an electron donor. 8. p-Chlormercuribenzoate enhances the enzymatic activity at concentrations of 0.1 mM and lower. At higher p-chlormercuribenzoate concentrations the enzymatic activity is inhibited non-competitively with either nitrate or benzylviologen as a substrate. The inhibition is not counteracted by cysteine.  相似文献   

8.
9.
10.
Klebsiella aerogenes urease was purified 1,070-fold with a 25% yield by a simple procedure involving DEAE-Sepharose, phenyl-Sepharose, Mono Q, and Superose 6 chromatographies. The enzyme preparation was comprised of three polypeptides with estimated Mr = 72,000, 11,000, and 9,000 in a alpha 2 beta 4 gamma 4 quaternary structure. The three components remained associated during native gel electrophoresis, Mono Q chromatography, and Superose 6 chromatography despite the presence of thiols, glycols, detergents, and varied buffer conditions. The apparent compositional complexity of K. aerogenes urease contrasts with the simple well-characterized homohexameric structure for jack bean urease (Dixon, N. E., Hinds, J. A., Fihelly, A. K., Gazzola, C., Winzor, D. J., Blakeley, R. L., and Zerner, B. (1980) Can. J. Biochem. 58, 1323-1334); however, heteromeric subunit compositions were also observed for the enzymes from Proteus mirabilis, Sporosarcina ureae, and Selemonomas ruminantium. K. aerogenes urease exhibited a Km for urea of 2.8 +/- 0.6 mM and a Vmax of 2,800 +/- 200 mumol of urea min-1 mg-1 at 37 degrees C in 25 mM N-2-hydroxyethylpiperazineN'-2-ethanesulfonic acid, 5.0 mM EDTA buffer, pH 7.75. The enzyme activity was stable in 1% sodium dodecyl sulfate, 5% Triton X-100, 1 M KCl, and over a pH range from 5 to 10.5, with maximum activity observed at pH 7.75. Two active site groups were defined by their pKa values of 6.55 and 8.85. The amino acid composition of K. aerogenes urease more closely resembled that for the enzyme from Brevibacter ammoniagenes (Nakano, H., Takenishi, S., and Watanabe, Y. (1984) Agric. Biol. Chem. 48, 1495-1502) than those for plant ureases. Atomic absorption analysis was used to establish the presence of 2.1 +/- 0.3 mol of nickel per mol of 72,000-dalton subunit in K. aerogenes urease.  相似文献   

11.
A phosphohydrolase from Enterobacter aerogenes which hydrolyzes phosphate mono- and diesters has been purified approximately 50-fold to apparent homoeneity and crystallized. The enzyme is produced when the bacteria utilize phosphate diesters as sole phosphorus source. From sedimentation equilibrium experiments the molecular weight of the native enzyme is 173,000; from sodium dodecyl sulfate polyacrylamide gel electrophoresis the subunit molecular weight is 29,000, indicating that the enzyme is hexameric. The hydrolytic activity of the enzyme using both mono- and diesters is maximal at pH 5; THE Km of the enzyme for bis-p-nitrophenyl phosphate is constant from pH 5 to 8.5 whereas that for p-nitrophenyl phosphate increases about 40-fold as the pH increases over the same range. The phosphodiesterase activity is not inhibited by chelating agents but is inhibited by several divalent metal ions. 31-P NMR spectroscopy was used to identify the hydrolysis products of glycoside cyclic phosphates. The enzyme-catalyzed hydrolysis of methyl beta-D-ribofuranoside cyclic 3:5-phosphate yields exclusively the 5-phosphate whereas that of adenosine 3:5-monophosphate yields a 4:1 mixture of 3- and 5- AMP.  相似文献   

12.
Co-transduction experiments using P1-mediated reciprocal and three-factor crosses have been used to map two mutations affecting the aspartate and aromatic amino acid aminotransferases of Escherichia coli. tyrB-, which inactivates the tyrosine-repressible component of these activities is co-transducible with metA and malB; the gene order is metA-malB-tyrB. aspC-, which inactivates the nonrepressible aminotransferase with high activity for aspartate, maps between and is co-transducible with serC and pyrD.  相似文献   

13.
Strains of Escherichia coli that lack the branched-chain amino acid amino-transferase because of mutations in the ilvE gene had no growth requirement for leucine when the cells contained the aromatic amino acid aminotransferase that is the product of the tyrB gene. The presence of leucine increased the generation time of these cells and decreased the specific activity of the aromatic amino acid aminotransferase. It is concluded that this enzyme functions efficiently in leucine biosynthesis and can be repressed by leucine as well as by tyrosine.  相似文献   

14.
Summary AnE. coli B strain showing high activity in the transamination of phenylpyruvate to phenylalanine was used as the DNA source for the construction of a cosmid library inE. coli DG30, a strain which is known to be defective in all three major transaminase genes (aspC, ilvE andtyrB). By complementation analysis, cosmid clones could be identified with inserts carrying atyrB gene. The DNA inserts were further subcloned into pAT153 and thetyrB gene fromE. coli B was found to be similar to the gene reported forE. coli K12. Plasmids containing theE. coli BtyrB gene were transformed into the originalE. coli B strain and the recombinant strains assayed for transaminase activity and plasmid stability.Dedicated to Prof. Dr. Heinz Harnisch on the occasion of his 60th birthday.  相似文献   

15.
An enzyme which catalyzes the transamination of L-alanine with 2-oxoglutarate has been purified 157-fold to electrophoretic homogeneity from the unicellular green alga Chlamydomonas reinhardtii 6145c. The enzyme showed maximal activity at pH 7.3 and 50 degrees C, has an apparent molecular mass of 105 kDa as estimated by gel filtration, and consists of two identical subunits of 45 kDa each as deduced from PAGE/SDS studies. A stoichiometry of two moles pyridoxal 5-phosphate/mole enzyme was calculated. The enzyme has an isoelectric point of 8.3 and its absorption spectrum exhibits a maximum at 412 nm which is shifted to 330 nm upon addition of L-alanine. Pyridoxal 5-phosphate protected activity against heat inactivation and, to a minor extent, L-alanine and 2-oxoglutarate, but not L-glutamate. Spectral data and activity inhibition and protection studies strongly support the involvement of pyridoxal 5-phosphate in enzyme catalysis through a Schiff's base formation. The purified enzyme was able to transaminate only L-alanine and L-glutamate with glyoxylate out of ten amino acids tested. L-Alanine aminotransferase exhibited hyperbolic kinetic for 2-oxoglutarate, pyruvate, and L-glutamate, and nonhyperbolic behaviour for L-alanine. Apparent Km values were 0.054 mM for 2-oxoglutarate, 0.52 for L-glutamate, 0.24 mM for pyruvate, and 2.7 mM for L-alanine. Transamination of L-alanine in C. reinhardtii is a bisubstrate reaction with a bi-bi ping-pong mechanism, and is not inhibited by substrates.  相似文献   

16.
Previous studies with rat kidney preparations indicated that alpha-aminoadipate aminotransferase (AadAT) and kynurenine aminotransferase (KAT) activities are associated with a single protein. However, recent studies from our laboratory demonstrated that AadAT and KAT activities belong to two different proteins. AadAT from rat kidney supernatant fraction was purified by affinity chromatography to electrophoretic homogeneity. This rapid and efficient procedure improved the yield and the degree of purification over previously published methods and separated AadAT from KAT. The molecular weight of the enzyme was estimated to be 89,000 by Sephadex G-200 gel filtration chromatography. SDS-PAGE indicated that the enzyme is composed of two apparently identical subunits. Absorption spectra and the kinetic properties of AadAT are reported.  相似文献   

17.
Klebsiella aerogenes utilized aromatic amino acids as sole sources of nitrogen but not as sole sources of carbon. K. aerogenes abstracted the alpha-amino group of these compounds by transamination and excreted the arylpyruvate portions into the medium. When tryptophan was utilized as the sole source of nitrogen by K. aerogenes, indolepyruvate was excreted into the medium, where it polymerized non-enzymatically to form a brick red pigment. At least four separate aromatic aminotransferase activities were found in K. aerogenes. One activity (aromatic aminotransferase I) appeared to be solely responsible for the aminotransferase reaction necessary for the growth of K. aerogenes when tryptophan was the source of nitrogen; the loss of this activity by mutation (tut) prevented the growth of cells on media containing this and other aromatic amino acids. None of the other aminotransferase activities in the cells could substitute for aromatic aminotransferase in this regard. Tryptophan-dependent pigment formation in K. aerogenes was positively controlled by the intracellular level of glutamine synthetase. Nevertheless, the aromatic aminotransferase activity in cells varied less than 2-fold in response to 10-fold or greater changes in the levels of glutamine synthetase. Glutamine synthetase affected the ability of the cells to take up tryptophan from the medium.  相似文献   

18.
AIM: Purification and characterization of an aminotransferase (AT) specific for the degradation of branched-chain amino acids from Lactobacillus paracasei subsp. paracasei CHCC 2115. METHODS AND RESULTS: The purification protocol consisted of anion exchange chromatography, affinity chromatography and hydrophobic interaction chromatography. The enzyme was found to exist as a monomer with a molecular mass of 40-50 kDa. The AT converted isoleucine, leucine and valine at a similar rate with alpha-ketoglutarate as the amino group acceptor; minor activity was shown for methionine. The enzyme had pH and temperature optima of 7.3 and 43 degrees C, respectively, and activity was detected at the pH and salt conditions found in cheese (pH 5.2, 4% NaCl). Hg2+ completely inhibited the enzyme, and the inhibition pattern was similar to that for pyridoxal-5'-phosphate-dependent enzymes, when studying the effect of other metal ions, thiol- and carbonyl-binding agents. The N-terminal sequence of the enzyme was SVNIDWNNLGFDYMQLPYRYVAHXKDGVXD, and had at the amino acid level, 60 and 53% identity to a branched-chain amino acid AT of Lact. plantarum and Lactococcus lactis, respectively. CONCLUSIONS: The results suggest that Lact. paracasei subsp. paracasei CHCC 2115 may contribute to development of flavour in cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of this work contribute to the knowledge of transamination performed by cheese-related bacteria, and in the understanding and control of amino acid catabolism and the production of aroma compounds.  相似文献   

19.
Micrococcus aerogenes grown in media containing glutamate has high levels of glutamate dehydrogenase and alpha-ketoglutarate reductase. The latter enzyme catalyzes the reversible reduction of alpha-ketoglutarate to alpha-hydroxyglutarate in the presence of reduced nicotinamide adenine dinucleotide (NADH). The enzyme has a high specificity for both substrates in either direction and displays Michaelis-Menten kinetics at moderate substrate concentrations. K(m) values of 0.12 to 0.17 mm alpha-ketoglutarate and 0.3 mm NADH for the forward reaction were calculated from data obtained at low substrate concentrations. At high concentrations, this reaction was inhibited by both substrates. The reverse reaction, which proceeded at 0.1 to 0.2 times the rate of the forward reactions, was inhibited by one of the products, alpha-ketoglutarate. K(m) values for the substrates of this reaction were 10 mm for alpha-hydroxyglutarate and 1 mm for nicotinamide adenine dinucleotide. alpha-Ketoglutarate reductase has a molecular weight of 7.5 x 10(4) to 8.2 x 10(4) and is composed of identical polypeptide chains with a molecular weight of 3.6 x 10(4) to 3.8 x 10(4).  相似文献   

20.
Cytosolic and mitochondrial isozymes of aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase [EC 2.6.1.1] ) were purified to homogeneity from rabbit liver. The rabbit liver isozymes were closely similar to the corresponding isozymes from other sources, including human heart, pig heart, chicken heart, and rat liver, in their molecular weights, absorption spectra, amino acid compositions, isoelectric points, and Michaelis constants for the substrates. The NH2-terminal amino acid sequences of rabbit liver isozymes were identified up to 30 residues, and showed some differences from those of the corresponding isozymes obtained from other animals so far studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号