首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How the Smads regulate transcription   总被引:4,自引:0,他引:4  
  相似文献   

2.
Progression through the cell cycle is central to cell proliferation and fundamental to the growth and development of all multicellular organisms, including higher plants. The periodic activation of complexes containing cyclins and cyclin-dependent kinases mediates the temporal regulation of the cell-cycle transitions. Here, we highlight recent advances in the molecular controls of the cell cycle in plant cells, with special emphasis on how hormonal signals can modulate the regulation of cyclin-dependent kinases.  相似文献   

3.
4.
Cell cycle regulation is performed by cyclins and cyclin dependent kinases (CDKs). Recently, it has become clear that reactive oxygen species (ROS) influence the presence and activity of these enzymes and thereby control cell cycle progression. In this review, we first describe the discovery of enzymes specialized in ROS production: the NADPH oxidase (NOX) complexes. This discovery led to the recognition of ROS as essential players in many cellular processes, including cell cycle progression. ROS influence cell cycle progression in a context-dependent manner via phosphorylation and ubiquitination of CDKs and cell cycle regulatory molecules. We show that ROS often regulate ubiquitination via intermediate phosphorylation and that phosphorylation is thus the major regulatory mechanism influenced by ROS. In addition, ROS have recently been shown to be able to activate growth factor receptors. We will illustrate the diverse roles of ROS as mediators in cell cycle regulation by incorporating phosphorylation, ubiquitination and receptor activation in a model of cell cycle regulation involving EGF-receptor activation. We conclude that ROS can no longer be ignored when studying cell cycle progression.  相似文献   

5.
Reiske HR  Zhao J  Han DC  Cooper LA  Guan JL 《FEBS letters》2000,486(3):275-280
Focal adhesion kinase (FAK) is an important mediator of signal transduction pathways initiated by integrins in cell migration, survival and cell cycle regulation. The ability of FAK to mediate integrin signaling in the regulation of cell cycle progression depends on the phosphorylation of Tyr397, which implies a functional significance for the formation of FAK signaling complexes with Src, phosphatidylinositol-3-kinase (PI3K) and Grb7. We have previously described a FAK mutant, D395A, that selectively disrupts FAK binding to PI3K, but allows FAK association with Src. Using this mutation in a mislocalized FAK mutant background, we show here that formation of a FAK/PI3K complex is not sufficient for cell cycle progression but the formation of a FAK/Src complex plays an essential role. We also show that mutation of D395 to A disrupted FAK association with Grb7. This suggests that a FAK/Grb7 complex is not involved in the cell cycle regulation either, which is supported by direct analysis of cells expressing a dominant negative Grb7 construct. Finally, we provide evidence that the Src-dependent association of FAK with Grb2 and p130(Cas) are both required for the regulation of cell cycle progression by FAK. Together, these studies identify important FAK downstream signaling pathways in cell cycle regulation.  相似文献   

6.
7.
Studies on the initiation of DNA replication in eukaryotes have progressed recently through different approaches that promise to converge. Proteins interacting with the origin recognition complex form a prereplicative complex early in the cell cycle. The regulation of the binding of MCM/P1 proteins to chromatin plays a key role in the replication licensing system which prevents re-replication in a single cell cycle. Cyclin-dependent kinases provide an overall control of the cell cycle by stimulating S-phase entry and possibly by preventing re-establishment of prereplicative complexes in G2 phase.  相似文献   

8.
Lamins and lamin-associated proteins in aging and disease   总被引:5,自引:0,他引:5  
Lamins, together with the lamin-associated proteins of the inner nuclear membrane, are structural proteins in the nucleus that mediate mechanical stress resistance. Novel findings show that lamin complexes also have scaffolding functions in the formation and regulation of higher order chromatin and in epigenetic regulatory pathways. Furthermore, lamins serve as scavenging complexes and regulators of signaling molecules in diverse pathways. Lamin complexes in the nuclear interior contribute to retinoblastoma-mediated cell cycle regulation. Because of their multiple and diverse roles, lamins are linked to an increasing number of human diseases. The molecular mechanisms of these diseases, which are just beginning to emerge, may involve cell cycle and differentiation defects in adult stem cells and genomic instability.  相似文献   

9.
p27(Kip1) (p27), a prototypical intrinsically disordered protein (IDP), regulates eukaryotic cell division through interactions with cyclin-dependent kinase (Cdk)/cyclin complexes. The activity, stability, and subcellular localization of p27 are regulated by phosphorylation. We illustrate how p27 integrates regulatory signals from several non-receptor tyrosine kinases (NRTKs) to activate Cdk4 and initiate cell cycle entry. Unmodified p27 potently inhibits Cdk/cyclin complexes, including Cdk4/cyclin D (IC(50), 1 nM). Some NRTKs (e.g., Abl) phosphorylate p27 on Tyr 88, which facilitates a second modification on Tyr 74 by another NRTK (e.g., Src). Importantly, this second modification causes partial reactivation of Cdk4 within ternary complexes containing doubly Tyr phosphorylated p27. Partial activation of Cdk4 initiates entry into the cell division cycle. Therefore, p27's disordered features enable NRTKs to sequentially promote a phosphorylation cascade that controls cell fate. Beyond cell cycle control, these results illustrate general concepts regarding why IDPs are well-suited for roles in signaling and regulation in biological systems.  相似文献   

10.
11.
Differential phosphorylation of the retinoblastoma protein plays a pivotal role in cell cycle regulation. The retinoblastoma protein is specifically phosphorylated during the cell cycle by cyclin-dependent kinase complexes which intersect with many cellular signaling networks. Since the loss of the retinoblastoma signaling pathways occurs in a wide variety of human tumors, understanding the significance of site-specific phosphorylation can clarify the role of selected cyclin-dependent kinase complexes during cell cycle progression. Here we describe the phosphospecificity and cellular characterization of a panel of polyclonal antibodies that recognize unique phosphorylation sites within the retinoblastoma protein. These reagents were used to validate authentic cellular retinoblastoma phosphorylation sites at amino acids 780, 795, and 807/811 correlating with the G1-S transition.  相似文献   

12.
Plant cell cycle transitions   总被引:10,自引:0,他引:10  
Three decades have passed since the first recognition of restriction checkpoints in the plant cell cycle. Although many core cell cycle genes have been cloned, the mechanisms that control the G1-->S and G2-->M transitions in plants have only recently started to be understood. The cyclin-dependent kinases (CDKs) play a central role in the regulation of the cell cycle, and the activity of these kinases is steered by regulatory subunits, the cyclins. The activities of CDK-cyclin complexes are further controlled by an intricate panoply of monitoring mechanisms, which result in oscillating CDK activity during the division cycle. These fluctuations trigger transitions between the different stages of the cell cycle.  相似文献   

13.
14.
Since the early genetic studies in yeast, regulation of the cell cycle has been associated to the sequential activation of several proline-directed serine-threonine protein kinases by cyclins. From yeast to humans, the activiy of these cyclin-dependent kinases (Cdks) have been thought to be essential for cell cycle regulation. Recent gene-targeted mouse models for different cyclins and Cdks have shown that members of these families show a certain level of redundancy and that specific complexes are not required for the mitotic cell cycle. However, the complexity of the Cdk-cyclin network and the promiscuity of their members makes it difficult to understand the relative contribution of these proteins to the mammalian cell division cycle. Compensatory roles by non-Cdk activities and Cdk-independent functions of cyclins are increasing the complexity of the current simplistic models. We still do not know whether at least one cyclin-dependent kinase activity is required for cell cycle progression in mammalian cells. Indeed, a relevant question for cancer therapy.  相似文献   

15.
16.
The cell division cycle 25A (CDC25A) phosphatase is a key regulator of cell cycle progression that acts on the phosphorylation status of Cyclin–Cyclin-dependent kinase complexes, with an emergent role in the DNA damage response and cell survival control. The regulation of CDC25A activity and its protein level is essential to control the cell cycle and maintain genomic integrity. Here we describe a novel ubiquitin/proteasome-mediated pathway negatively regulating CDC25A stability, dependent on its phosphorylation by the serine/threonine kinase DYRK2. DYRK2 phosphorylates CDC25A on at least 7 residues, resulting in its degradation independent of the known CDC25A E3 ubiquitin ligases. CDC25A in turn is able to control the phosphorylation of DYRK2 at several residues outside from its activation loop, thus affecting DYRK2 localization and activity. An inverse correlation between DYRK2 and CDC25A protein amounts was observed during cell cycle progression and in response to DNA damage, with CDC25A accumulation responding to the manipulation of DYRK2 levels or activity in either physiological scenario. Functional data show that the pro-survival activity of CDC25A and the pro-apoptotic activity of DYRK2 could be partly explained by the mutual regulation between both proteins. Moreover, DYRK2 modulation of CDC25A expression and/or activity contributes to the DYRK2 role in cell cycle regulation. Altogether, we provide evidence suggesting that DYRK2 and CDC25A mutually control their activity and stability by a feedback regulatory loop, with a relevant effect on the genotoxic stress pathway, apoptosis, and cell cycle regulation.Subject terms: Proteins, Cell biology, Proteomics  相似文献   

17.
18.
19.
20.
泛素-蛋白酶体降解途径在细胞周期调控中的作用   总被引:6,自引:0,他引:6  
细胞周期的进程由一系列细胞周期蛋白依赖性激酶(CDK)和CDK活性调节因子驱动。泛素-蛋白酶体对细胞周期调节因子的降解是细胞调控分裂进程的重要手段。CDK活性抑制因子的降解是细胞分裂所必需的,而细胞周期正调控因子的降解则对维持细胞稳态至关重要。本从参与调控的2类泛素连接酶SCF复合物、APC/C复合物的结构和功能的角度阐述了泛素-蛋白酶体降解途径在整个细胞周期调控中的作用和意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号