首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena.  相似文献   

2.
Epigenetic variation has been observed in a range of organisms, leading to questions of the adaptive significance of this variation. In this study, we present a model to explore the ecological and genetic conditions that select for epigenetic regulation. We find that the rate of temporal environmental change is a key factor controlling the features of this evolution. When the environment fluctuates rapidly between states with different phenotypic optima, epigenetic regulation may evolve but we expect to observe low transgenerational inheritance of epigenetic states, whereas when this fluctuation occurs over longer time scales, regulation may evolve to generate epigenetic states that are inherited faithfully for many generations. In all cases, the underlying genetic variation at the epigenetically regulated locus is a crucial factor determining the range of conditions that allow for evolution of epigenetic mechanisms.  相似文献   

3.
Individual variation in ecologically important features of organisms is a crucial element in ecology and evolution, yet disentangling its underlying causes is difficult in natural populations. We applied a genomic scan approach using amplified fragment length polymorphism (AFLP) markers to quantify the genetic basis of long‐term individual differences in herbivory by mammals at a wild population of the violet Viola cazorlensis monitored for two decades. In addition, methylation‐sensitive amplified polymorphism (MSAP) analyses were used to investigate the association between browsing damage and epigenetic characteristics of individuals, an aspect that has been not previously explored for any wild plant. Structural equation modelling was used to identify likely causal structures linking genotypes, epigenotypes and herbivory. Individuals of V. cazorlensis differed widely in the incidence of browsing mammals over the 20‐year study period. Six AFLP markers (1.6% of total) were significantly related to herbivory, accounting altogether for 44% of population‐wide variance in herbivory levels. MSAP analyses revealed considerable epigenetic variation among individuals, and differential browsing damage was significantly related to variation in multilocus epigenotypes. In addition, variation across plants in epigenetic characteristics was related to variation in several herbivory‐related AFLP markers. Statistical comparison of alternative causal models suggested that individual differences in herbivory are the outcome of a complex causal structure where genotypes and epigenotypes are interconnected and have direct and indirect effects on herbivory. Insofar as methylation states of MSAP markers influential on herbivory are transgenerationally heritable, herbivore‐driven evolutionary changes at the study population will involve correlated changes in genotypic and epigenotypic distributions.  相似文献   

4.
5.
Natural selection acts on variation that is typically assumed to be genetic in origin. But epigenetic mechanisms, which are interposed between the genome and its environment, can create diversity independently of genetic variation. Epigenetic states can respond to environmental cues, and can be heritable, thus providing a means by which environmentally responsive phenotypes might be selectable independent of genotype. Here, we have tested the possibility that environment and selection can act together to increase the penetrance of an epigenetically determined phenotype. We used isogenic A(vy) mice, in which the epigenetic state of the A(vy) allele is sensitive to dietary methyl donors. By combining methyl donor supplementation with selection for a silent A(vy) allele, we progressively increased the prevalence of the associated phenotype in the population over five generations. After withdrawal of the dietary supplement, the shift persisted for one generation but was lost in subsequent generations. Our data provide the first demonstration that selection for a purely epigenetic trait can result in cumulative germline effects in mammals. These results present an alternative to the paradigm that natural selection acts only on genetic variation, and suggest that epigenetic changes could underlie rapid adaptation of species in response to natural environmental fluctuations.  相似文献   

6.
Using a phenotypic model, we show that significant heritable variation can be maintained in a population subjected to temporally fluctuating selection if only one sex is subject to selection. In fact, more variation is maintained with sex-limited selection at a given selection intensity than if both sexes are subject to half that selection intensity. This result is commensurate with existing population genetic models. However, genetic models may be inappropriate for sexually selected traits because many of them may be of non-genetic origin, such as maternal effects or – more likely –epigenetic effects. Phenotypic models obviate this problem by accommodating both genetic and epigenetic effects, as well as maternaleffects. Our phenotypic model of sex-limited temporally fluctuating selection shows that substantial heritable variation can be maintained and therebyprovides impetus to develop population epigenetic models.  相似文献   

7.
Variation of DNA methylation is thought to play an important role for rapid adjustments of plant populations to dynamic environmental conditions, thus compensating for the relatively slow response time of genetic adaptations. However, genetic and epigenetic variation of wild plant populations has not yet been directly compared in fast changing environments. Here, we surveyed populations of Viola elatior from two adjacent habitat types along a successional gradient characterized by strong differences in light availability. Using amplified fragment length polymorphisms (AFLP) and methylation‐sensitive amplification polymorphisms (MSAP) analyses, we found relatively low levels of genetic (Hgen = 0.19) and epigenetic (Hepi = 0.23) diversity and high genetic (?ST = 0.72) and epigenetic (?ST = 0.51) population differentiation. Diversity and differentiation were significantly correlated, suggesting that epigenetic variation partly depends on the same driving forces as genetic variation. Correlation‐based genome scans detected comparable levels of genetic (17.0%) and epigenetic (14.2%) outlier markers associated with site specific light availability. However, as revealed by separate differentiation‐based genome scans for AFLP, only few genetic markers seemed to be actually under positive selection (0–4.5%). Moreover, principal coordinates analyses and Mantel tests showed that overall epigenetic variation was more closely related to habitat conditions, indicating that environmentally induced methylation changes may lead to convergence of populations experiencing similar habitat conditions and thus may play a major role for the transient and/or heritable adjustment to changing environments. Additionally, using a new MSAP‐scoring approach, we found that mainly the unmethylated (?ST = 0.60) and CG‐methylated states (?ST = 0.46) of epiloci contributed to population differentiation and putative habitat‐related adaptation, whereas CHG‐hemimethylated states (?ST = 0.21) only played a marginal role.  相似文献   

8.
We present here a simple, rapid, and extremely flexible technique for the immobilization and visualization of growing yeast cells by epifluorescence microscopy. The technique is equally suited for visualization of static yeast populations, or time courses experiments up to ten hours in length. My microscopy investigates epigenetic inheritance at the silent mating loci in S. cerevisiae. There are two silent mating loci, HML and HMR, which are normally not expressed as they are packaged in heterochromatin. In the sir1 mutant background silencing is weakened such that each locus can either be in the expressed or silenced epigenetic state, so in the population as a whole there is a mix of cells of different epigenetic states for both HML and HMR. My microscopy demonstrated that there is no relationship between the epigenetic state of HML and HMR in an individual cell. sir1 cells stochastically switch epigenetic states, establishing silencing at a previously expressed locus or expressing a previously silenced locus. My time course microscopy tracked individual sir1 cells and their offspring to score the frequency of each of the four possible epigenetic switches, and thus the stability of each of the epigenetic states in sir1 cells. See also Xu et al., Mol. Cell 2006.  相似文献   

9.
猕猴桃倍性混合居群基因组遗传和表观遗传变异   总被引:1,自引:0,他引:1  
颜菱  刘义飞  黄宏文 《植物学报》2012,47(5):454-461
植物倍性混合居群的形成和维系常伴随着明显的基因组遗传及表观遗传变异。利用AFLP和MSAP两种分子标记探讨了中华猕猴桃复合体(Actinidia chinensis)倍性混合居群的遗传变异和结构及其基因组甲基化变异方式。结果表明, 该倍性混合居群具有较高的遗传和表观遗传多样性, 但两者之间没有明显的相关性。种群的遗传多样性与海拔呈显著的负相关(P<0.05), 但表观遗传多样性与海拔不具显著相关性。AMOVA分析显示, 主要的遗传和表观遗传分化出现在倍性小种内部(97.65% vs 99.84%, P<0.05); 同时, AFLP邻接聚类分析显示二者存在一定程度的倍性相关性, MSAP分析则未显示有明显的倍性相关性。进一步研究发现, 中华猕猴桃居群的总甲基化程度为24.86%, 且多倍体具有更多的甲基化位点变异。该研究结果为深入探讨猕猴桃倍性混合居群的形成和维系机制奠定了基础。  相似文献   

10.
Bossdorf O  Zhang Y 《Molecular ecology》2011,20(8):1572-1574
Until a few years ago, epigenetics was a field of research that had nothing to do with ecology and that virtually no ecologist had ever heard of. This is now changing, as more and more ecologists learn about epigenetic processes and their potential ecological and evolutionary relevance, and a new research field of ecological epigenetics is beginning to take shape. One question that is particularly intriguing ecologists is to what extent epigenetic variation is an additional, and hitherto overlooked, source of natural variation in ecologically important traits. In this issue of Molecular Ecology, Herrera & Bazaga (2011) provide one of the first attempts to truly address this question in an ecological setting. They study variation of DNA methylation in a wild population of the rare, long-lived violet Viola cazorlensis, and they use these data to explore interrelations between environmental, genetic and epigenetic variation, and in particular the extent to which these factors are related to long-term differences in herbivore damage among plants. They find substantial epigenetic variation among plant individuals. Interestingly, this epigenetic variation is significantly correlated with long-term differences in herbivory, but only weakly with herbivory-related DNA sequence variation, which suggests that besides habitat, substrate and genetic variation, epigenetic variation may be an additional, and at least partly independent, factor influencing plant–herbivore interactions in the field. Although the study by Herrera & Bazaga (2011) raises at least as many new questions as it answers, it is a pioneering example of how epigenetics can be incorporated into ecological field studies, and it illustrates the value and potential novel insights to be gained from such efforts.  相似文献   

11.
There has been minimal theoretical exploration of the role of epigenetic variation in the response to natural selection. Using a population genetic model, I derive formulae that characterize the response of epigenetic variation to selection over multiple generations. Unlike genetic models in which mutation rates are assumed to be low relative to the strength of selection, the response to selection decays quickly due to a rapid lowering of parent-offspring epiallelic correlation. This effect is separate from the slowing response caused by a reduction in epigenetic variation. These results suggest that epigenetic variation may be less responsive to natural selection than is genetic variation, even in cases where levels of heritability appear similar.  相似文献   

12.
Epigenetic changes can provide a pathway for organisms to respond to local environmental conditions by influencing gene expression. However, we still know little about the spatial distribution of epigenetic variation in natural systems, how it relates to the distribution of genetic variation and the environmental structure of the landscape, and the processes that generate and maintain it. Studies examining spatial patterns of genetic and epigenetic variation can provide valuable insights into how ecological and population processes contribute to epigenetic divergence across heterogeneous landscapes. Here, we perform a comparative analysis of spatial genetic and epigenetic variation based on 8,459 single nucleotide polymorphisms (SNPs) and 8,580 single methylation variants (SMVs) from eight populations of the Puerto Rican crested anole, Anolis cristatellus, an abundant lizard in the adaptive radiations of anoles on the Greater Antilles that occupies a diverse range of habitats. Using generalized dissimilarity modelling and multiple matrix regression, we found that genome‐wide epigenetic differentiation is strongly correlated with environmental divergence, even after controlling for the underlying genetic structure. We also detected significant associations between key environmental variables and 96 SMVs, including 42 located in promoter regions or gene bodies. Our results suggest an environmental basis for population‐level epigenetic differentiation in this system and contribute to better understanding how environmental gradients structure epigenetic variation in nature.  相似文献   

13.
Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally‐mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates.  相似文献   

14.
Some species exhibit very high levels of DNA sequence variability; there is also evidence for the existence of heritable epigenetic variants that experience state changes at a much higher rate than sequence variants. In both cases, the resulting high diversity levels within a population (hyperdiversity) mean that standard population genetics methods are not trustworthy. We analyze a population genetics model that incorporates purifying selection, reversible mutations, and genetic drift, assuming a stationary population size. We derive analytical results for both population parameters and sample statistics and discuss their implications for studies of natural genetic and epigenetic variation. In particular, we find that (1) many more intermediate-frequency variants are expected than under standard models, even with moderately strong purifying selection, and (2) rates of evolution under purifying selection may be close to, or even exceed, neutral rates. These findings are related to empirical studies of sequence and epigenetic variation.  相似文献   

15.
为了解种群内水平上影响植物的适应机制与空间格局关系的因素,对鼎湖山2个演替阶段林分锥(Castanopsis chinensis)种群通过DNA甲基敏感扩增片段多态性进行表观遗传特征分析,结果表明,微生境对表观遗传变异的贡献由成熟林的20.2%降低为过熟林的15.7%,但地形因素的影响却增大,同时微生境中具体起显著作用的环境因素在两个林分也不同。因此,微生境特征对种群适应机制和分布格局有显著影响,对演替阶段也有影响。  相似文献   

16.
Epigenetic changes can be induced by adverse environmental exposures, such as nutritional imbalance, but little is known about the nature or extent of these changes. Here we have explored the epigenomic effects of a sustained nutritional change, excess dietary methyl donors, by assessing genomic CpG methylation patterns in isogenic mice exposed for one or six generations. We find stochastic variation in methylation levels at many loci; exposure to methyl donors increases the magnitude of this variation and the number of variable loci. Several gene ontology categories are significantly overrepresented in genes proximal to these methylation-variable loci, suggesting that certain pathways are susceptible to environmental influence on their epigenetic states. Long-term exposure to the diet (six generations) results in a larger number of loci exhibiting epigenetic variability, suggesting that some of the induced changes are heritable. This finding presents the possibility that epigenetic variation within populations can be induced by environmental change, providing a vehicle for disease predisposition and possibly a substrate for natural selection.  相似文献   

17.
Although there is keen interest in the potential adaptive value of epigenetic variation, it is unclear what conditions favor the stability of these variants either within or across generations. Because epigenetic modifications can be environmentally sensitive, existing theory on adaptive phenotypic plasticity provides relevant insights. Our consideration of this theory suggests that stable maintenance of environmentally induced epigenetic states over an organism's lifetime is most likely to be favored when the organism accurately responds to a single environmental change that subsequently remains constant, or when the environmental change cues an irreversible developmental transition. Stable transmission of adaptive epigenetic states from parents to offspring may be selectively favored when environments vary across generations and the parental environment predicts the offspring environment. The adaptive value of stability beyond a single generation of parent–offspring transmission likely depends on the costs of epigenetic resetting. Epigenetic stability both within and across generations will also depend on the degree and predictability of environmental variation, dispersal patterns, and the (epi)genetic architecture underlying phenotypic responses to environment. We also discuss conditions that favor stability of random epigenetic variants within the context of bet hedging. We conclude by proposing research directions to clarify the adaptive significance of epigenetic stability.  相似文献   

18.
《Epigenetics》2013,8(7):843-848
Epigenetic silencing is a pervasive mode of gene regulation in multicellular eukaryotes: stable differentiation of somatic cell types requires the maintenance of subsets of genes in an active or silent state. The variety of molecules involved, and the requirement for active maintenance of epigenetic states, creates the potential for errors on a large scale. When epigenetic errors - or epimutations - activate or inactivate a critical gene, they may cause disease. An epimutation that occurs in the germline or early embryo can affect all, or most, of the soma and phenocopy genetic disease. But the stochastic and reversible nature of epigenetic phenomena predicts that epimutations are likely to be mosaic and inherited in a nonmendelian manner; epigenetic diseases will thus rarely behave in the comfortably predictable manner of genetic diseases but will display variable expressivity and complex patterns of inheritance. Much phenotypic variation and common disease might be explained by epigenetic variation and aberration. The known examples of true epigenetic disease are at present limited, but this may reflect only the difficulty in distinguishing causal epigenetic aberrations from those that are merely consequences of disease, a challenge further extended by the impact of environmental agents on epigenetic mechanisms. The rapidly developing molecular characterization of epigenomes, and the new ability to survey epigenetic marks on whole genomes, may answer many questions about the causal role of epigenetics in disease; these answers have the potential to transform our understanding of human disease.  相似文献   

19.
Throughout most of the mammalian genome, genetically regulated developmental programming establishes diverse yet predictable epigenetic states across differentiated cells and tissues. At metastable epialleles (MEs), conversely, epigenotype is established stochastically in the early embryo then maintained in differentiated lineages, resulting in dramatic and systemic interindividual variation in epigenetic regulation. In the mouse, maternal nutrition affects this process, with permanent phenotypic consequences for the offspring. MEs have not previously been identified in humans. Here, using an innovative 2-tissue parallel epigenomic screen, we identified putative MEs in the human genome. In autopsy samples, we showed that DNA methylation at these loci is highly correlated across tissues representing all 3 embryonic germ layer lineages. Monozygotic twin pairs exhibited substantial discordance in DNA methylation at these loci, suggesting that their epigenetic state is established stochastically. We then tested for persistent epigenetic effects of periconceptional nutrition in rural Gambians, who experience dramatic seasonal fluctuations in nutritional status. DNA methylation at MEs was elevated in individuals conceived during the nutritionally challenged rainy season, providing the first evidence of a permanent, systemic effect of periconceptional environment on human epigenotype. At MEs, epigenetic regulation in internal organs and tissues varies among individuals and can be deduced from peripheral blood DNA. MEs should therefore facilitate an improved understanding of the role of interindividual epigenetic variation in human disease.  相似文献   

20.
This study aims to represent the first report on population variation of 20 non-metric skull characters in East European vole (Microtus levis) from the Balkan (populations from Northern Dobruja; Southern Dobruja; East part of the Danube Plain; North-east Trace; Sofia field; South-east Trace) and Anatolian peninsulas (populations from North-west Anatolia region and Central Anatolia region), on the basis of which to determine its epigenetic variability and to analyse their mutual geographical epigenetic relations through comparison of the epigenetic divergence among them. Estimation of epigenetic variation of the studied populations of M. levis showed similar pattern of variation, but it is mostly higher than the other rodent species with a similar range of distribution, such as Microtus arvalis, Mus musculus, Apodemus sylvaticus, Apodemus flavicollis and Clethrionomys glareolus. Each one of the studied traits manifested some polymorphism. Moreover, all the calculated epigenetic distances (MMD) were statistically insignificant (P < 0.05) and epigenetic cranial uniqueness (MU) of any studied population was not found. These results reveal lack of expressed geographic relationship of population epigenetic variability in East European vole. The revealed populations epigenetic polymorphism of M. levis gives an opportunity for more complete assessment of variability and biological diversity of this species, but further research is necessary to elucidate its population epigenetics, especially as the data obtained in recent investigations of cranial morphology of the sibling species from the group the M. arvalis (sensu lato) added new locations to the distribution map of the East European vole in Eurasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号