首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil column experiments were performed to obtain insight in the different biological and physico-chemical processes affecting biodegradation of halogenated compounds under natural conditions in a water infiltration site. Lower chlorinated aromatic compounds could be degraded under aerobic conditions, whereas highly chlorinated compounds and chlorinated aliphatic compounds were mainly transformed under anaerobic conditions. Microorganisms which derive energy from reductive dechlorination were enriched and characterized. It was found that microbes could adapt to using chlorinated benzenes by evolution of new enzyme specificities and by exchange of genetic material. For halogenated pollutants, which are generally hydrophobic, sorption processes control the concentration available for biodegradation. The effects of very low concentrations of halogenated compounds on their biodegradability are described. The use of isolated bacterial strains to enhance biodegradation was evaluated with respect to their temperature-related activity and to their adhesion properties.Abbreviations 3-CB 3-chlorobenzoate - DCB dichlorobenzene - HCH hexachlorocyclohexane - IS insertion sequence - PER tetrachloroethylene - Smin minimal substrate concentration for growth - TCB trichlorobenzene - TRI trichloroethylene - filtration coefficient  相似文献   

2.
The biodegradability of chlorinated methanes, chlorinated ethanes, chlorinated ethenes, chlorofluorocarbons (CFCs), chlorinated acetic acids, chlorinated propanoids and chlorinated butadienes was evaluated based on literature data. Evidence for the biodegradation of compounds in all of the compound categories evaluated has been reported. A broad range of chlorinated aliphatic structures are susceptible to biodegradation under a variety of physiological and redox conditions. Microbial biodegradation of a wide variety of chlorinated aliphatic compounds was shown to occur under five physiological conditions. However, any given physiological condition could only act upon a subset of the chlorinated compounds. Firstly, chlorinated compounds are used as an electron donor and carbon source under aerobic conditions. Secondly, chlorinated compounds are cometabolized under aerobic conditions while the microorganisms are growing (or otherwise already have grown) on another primary substrate. Thirdly, chlorinated compounds are also degraded under anaerobic conditions in which they are utilized as an electron donor and carbon source. Fourthly, chlorinated compounds can serve as an electron acceptor to support respiration of anaerobic microorganisms utilizing simple electron donating substrates. Lastly chlorinated compounds are subject to anaerobic cometabolism becoming biotransformed while the microorganisms grow on other primary substrate or electron acceptor. The literature survey demonstrates that, in many cases, chlorinated compounds are completely mineralised to benign end products. Additionally, biodegradation can occur rapidly. Growth rates exceeding 1 d-1 were observed for many compounds. Most compound categories include chlorinated structures that are used to support microbial growth. Growth can be due to the use of the chlorinated compound as an electron donor or alternatively to the use of the chlorinated compound as an electron acceptor (halorespiration). Biodegradation linked to growth is important, since under such conditions, rates of degradation will increase as the microbial population (biocatalyst) increases. Combinations of redox conditions are favorable for the biodegradation of highly chlorinated structures that are recalcitrant to degradation under aerobic conditions. However, under anaerobic conditions, highly chlorinated structures are partially dehalogenated to lower chlorinated counterparts. The lower chlorinated compounds are subsequently more readily mineralized under aerobic conditions.  相似文献   

3.
The soil vapor to indoor air exposure pathway is considered in a wide number of risk-based site management programs. In screening-level assessments of this exposure pathway, models are typically used to estimate the transport of vapors from either subsurface soils or groundwater to indoor air. Published studies indicate that the simple models used to evaluate this exposure pathway often over estimate the impact for aromatic hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xy-lene or BTEX), while showing reasonable agreement for estimates of chlorinated hydrocarbon impacts (e.g., PCE, TCE, DCE). Aerobic biodegradation of the petroleum hydrocarbons is most often attributed as the source of this disparity in the model/ data comparisons. This paper looks at the significance of aerobic biodegradation of aromatic hydrocarbons as part of the assessment of chemical vapor intrusion from soil or groundwater to indoor air. A review of relevant literature summarizing the available field data as well as various modeling approaches that include biodegradation is presented. This is followed by a simple modeling analysis that demonstrates the potential importance of biodegradation in the assessment of the soil vapor to indoor air exposure pathway. The paper concludes with brief discussions of other model considerations that are often not included in simple models but may have a significant impact on the intrusion of vapors into indoor air.  相似文献   

4.
Chlorinated benzoates enter the environment through their use as herbicides or as metabolites of other halogenated compounds. Ample evidence is available indicating biodegradation of chlorinated benzoates to CO2 and chloride in the environment under aerobic as well as anaerobic conditions. Under aerobic conditions, lower chlorinated benzoates can serve as sole electron and carbon sources supporting growth of a large list of taxonomically diverse bacterial strains. These bacteria utilize a variety of pathways ranging from those involving an initial degradative attack by dioxygenases to those initiated by hydrolytic dehalogenases. In addition to monochlorinated benzoates, several bacterial strains have been isolated that can grow on dichloro-, and trichloro- isomers of chlorobenzoates. Some aerobic bacteria are capable of cometabolizing chlorinated benzoates with simple primary substrates such as benzoate. Under anaerobic conditions, chlorinated benzoates are subject to reductive dechlorination when suitable electron-donating substrates are available. Several halorespiring bacteria are known which can use chlorobenzoates as electron acceptors to support growth. For example, Desulfomonile tiedjei catalyzes the reductive dechlorination of 3-chlorobenzoate to benzoate. The benzoate skeleton is mineralized by other microorganisms in the anaerobic environment. Various dichloro- and trichlorobenzoates are also known to be dechlorinated in anaerobic sediments.  相似文献   

5.
微生物降解石油烃的功能基因研究进展   总被引:1,自引:3,他引:1  
微生物对石油烃的降解在自然衰减去除土壤和地下水石油烃污染的过程中发挥了重要作用。微生物通过其产生的一系列酶来利用和降解这类有机污染物,其中,编码关键降解酶的基因称为功能基因。功能基因可作为生物标志物用于分析环境中石油烃降解基因的多样性。因此,研究石油降解功能基因是分析土著微生物群落多样性、评价自然衰减潜力与构建基因工程菌的重要基础。本文主要介绍了烷烃和芳香烃在有氧和无氧条件下的微生物降解途径,重点总结了烷烃和芳香烃降解的主要功能基因及其作用,包括参与羟化作用的单加氧酶和双加氧酶基因、延胡索酸加成反应的琥珀酸合酶基因以及中心中间产物的降解酶基因等。  相似文献   

6.
Numerous studies presented in the general literature have shown that the key mechanism affecting the rate and extent of migration of a contaminant plume is biodegradation since it removes contaminant mass and reduces average plume concentrations. This paper attempts to address the importance of biodegradation for fuel and chlorinated solvent plumes and to present a comprehensive review of rates of biodegradation obtained from field and laboratory studies. Data from approximately 280 studies are statistically analyzed to determine ranges of biodegradation rates for various contaminants under different redox conditions. A review of 133 studies for fuel hydrocarbons has yielded first-order biodegradation coefficients up to 0.445 day-1 under aerobic conditions and up to 0.522-1 under anaerobic conditions in 90% of the cases. A median rate constant for benzene of 0.3% day-1 was estimated from all studies, while those for toluene, ethylbenzene, and xylenes were estimated to be 4, 0.3, and 0.4% day-1, respectively. On the other hand, data from 138 studies with chlorinated solvents show that the less chlorinated compounds biodegrade in the 90% of the cases with rate constants lower than 1.35 day-1 under aerobic conditions and that highly chlorinated compounds biodegrade with decay coefficients up to 1.28 day-1 in 90% of the anoxic experiments. Median decay coefficients derived from all studies were 4.9, 0.07, 0.42, 0.86, 1.02, 0.44, and 4.7 day-1 for carbon tetrachloride, dichloroethane (DCA), cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE), trichloroethane (TCA), trichloroethene (TCE), and vinyl chloride, respectively. The rate constants presented in this study can be used in screening and modeling studies and to guide the assessment of natural attenuation as a viable remedial technology at contaminated sites. represent a compilation of available literature data.  相似文献   

7.
Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects   总被引:1,自引:0,他引:1  
Aromatic hydrocarbons contaminate many environments worldwide, and their removal often relies on microbial bioremediation. Whereas aerobic biodegradation has been well studied for decades, anaerobic hydrocarbon biodegradation is a nascent field undergoing rapid shifts in concept and scope. This review presents known metabolic pathways used by microbes to degrade aromatic hydrocarbons using various terminal electron acceptors; an outline of the few catabolic genes and enzymes currently characterized; and speculation about current and potential applications for anaerobic degradation of aromatic hydrocarbons.  相似文献   

8.
Biodegradation can achieve complete and cost-effective elimination of aromatic pollutants through harnessing diverse microbial metabolic processes. Aromatics biodegradation plays an important role in environmental cleanup and has been extensively studied since the inception of biodegradation. These studies, however, are diverse and scattered; there is an imperative need to consolidate, summarize, and review the current status of aromatics biodegradation. The first part of this review briefly discusses the catabolic mechanisms and describes the current status of aromatics biodegradation. Emphasis is placed on monocyclic, polycyclic, and chlorinated aromatic hydrocarbons because they are the most prevalent aromatic contaminants in the environment. Among monocyclic aromatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene; phenylacetic acid; and structurally related aromatic compounds are highlighted. In addition, biofilms and their applications in biodegradation of aromatic compounds are briefly discussed. In recent years, various biomolecular approaches have been applied to design and understand microorganisms for enhanced biodegradation. In the second part of this review, biomolecular approaches, their applications in aromatics biodegradation, and associated biosafety issues are discussed. Particular attention is given to the applications of metabolic engineering, protein engineering, and “omics” technologies in aromatics biodegradation.  相似文献   

9.
Aerobic and anaerobic biodegradation of six priority PCBs was investigated in continuous stirred tank reactors fed with naturally contaminated sewage sludge. Anaerobic and aerobic abiotic losses were higher for the lightly chlorinated PCBs but remained for all PCBs below 20%. Under strict methanogenic conditions, PCB removals were about 40% whatever PCB molecular weight or their degree of chlorination. However, considering abiotic losses, the heaviest PCBs were more efficiently anaerobically biodegraded probably because of higher dechlorination rates. The aerating sludge process enhanced removal of the lightest chlorinated PCBs from 40% up to 100%, while removal rates of the heaviest PCBs remained around 40%. Although the mesophilic aerobic process exhibits better removal efficiencies because of operating conditions, the results suggest that PCB biodegradation was strongly limited by their bioavailability in naturally contaminated sludge, under both redox conditions. Indeed, since PCB removal was closely linked to the solid reduction rates, PCB bioavailability was likely the limiting factor for biodegradation. As a consequence, the raw PCB concentrations (in mg kg–1dry weight) which are concerned by legislative procedures did not decrease sufficiently in both processes to reach a limit value fulfilling the current French/European regulation about PCB contents in sewage sludge before spreading on agricultural land.  相似文献   

10.
Our review of the metabolic pathways of pyridines and aza-arenes showed that biodegradation of heterocyclic aromatic compounds occurs under both aerobic and anaerobic conditions. Depending upon the environmental conditions, different types of bacteria, fungi, and enzymes are involved in the degradation process of these compounds. Our review indicated that different organisms are using different pathways to biotransform a substrate. Our review also showed that the transformation rate of the pyridine derivatives is dependent on the substituents. For example, pyridine carboxylic acids have the highest transformation rate followed by mono-hydroxypyridines, methylpyridines, aminopyridines, and halogenated pyridines. Through the isolation of metabolites, it was possible to demonstrate the mineralization pathway of various heterocyclic aromatic compounds. By using 14C-labeled substrates, it was possible to show that ring fission of a specific heterocyclic compound occurs at a specific position of the ring. Furthermore, many researchers have been able to isolate and characterize the microorganisms or even the enzymes involved in the transformation of these compounds or their derivatives. In studies involving 18O labeling as well as the use of cofactors and coenzymes, it was possible to prove that specific enzymes (e.g., mono- or dioxygenases) are involved in a particular degradation step. By using H2 18O, it could be shown that in certain transformation reactions, the oxygen was derived from water and that therefore these reactions might also occur under anaerobic conditions.  相似文献   

11.
High concentrations of chemicals have been found in sediments from urban areas of Puget Sound. Hundreds, of organic chemicals (including certain aromatic hydrocarbons [AHs] and various chlorinated compounds) were identified. Statistical methods were used to evaluate possible relationships between the chemistry data and fish diseases. Positive correlations were found between the frequencies of liver neoplasms (e.g., hepatocellular carcinoma) and other liver lesions in English sole (Parophrys vetulus) and concentrations of AHs in sediment; such correlations were not found with chlorinated hydrocarbons. Strong evidence was also obtained to show that many organic chemicals in sediment are bioavailable to bottom-dwelling fish. Stomach contents (consisting mainly of benthic invertebrates) from English sole had concentrations of a number of AHs similar to those in the sediment from which the fish were taken. In these same fish, metabolites of many aromatic compounds were found in bile using a procedure combining HPLC with fluorescence detection. Further, the concentrations of certain xenobiotic metabolites in bile were correlated positively with the occurrence of liver neoplasms in English sole.  相似文献   

12.
In this study I consider the incomplete biodegradation of aromatic compounds during the wastewater cycle between aerobic or anaerobic zones in biological nutrient removal processes, including aerobic biodegradation of compounds (such as cyclohex-1-ene-1-carboxyl-CoA) produced during the incomplete anaerobic biodegradation of aromatic compounds, and anaerobic biodegradation of compounds (such as catechol, protocatechuate, and gentisic acid) produced during the incomplete aerobic biodegradation of aromatic compounds. Anaerobic degradation of the aerobic central intermediates that result from the incomplete aerobic degradation of aromatic compounds usually leads to benzoyl-CoA. On the other hand, aerobic degradation of the anaerobic central intermediates that result from the incomplete anaerobic degradation of aromatic compounds usually leads to protocatechuate.  相似文献   

13.
'Super bugs' for bioremediation   总被引:1,自引:0,他引:1  
Chlorinated organic compounds are among the most significant pollutants in the world. Sequential use of anaerobic halorespiring bacteria, which are the key players in biological dehalogenation processes, and aerobic bacteria whose oxygenases are modified by directed evolution could lead to efficient and total degradation of highly chlorinated organic pollutants. Recently three interesting papers on halorespiration and polychlorinated biphenyl biodegradation were published.  相似文献   

14.
Basic and applied aspects in the microbial degradation of azo dyes   总被引:27,自引:0,他引:27  
Azo dyes are the most important group of synthetic colorants. They are generally considered as xenobiotic compounds that are very recalcitrant against biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several microorganisms are able, under certain environmental conditions, to transform azo dyes to non-colored products or even to completely mineralize them. Thus, various lignolytic fungi were shown to decolorize azo dyes using ligninases, manganese peroxidases or laccases. For some model dyes, the degradative pathways have been investigated and a true mineralization to carbon dioxide has been shown. The bacterial metabolism of azo dyes is initiated in most cases by a reductive cleavage of the azo bond, which results in the formation of (usually colorless) amines. These reductive processes have been described for some aerobic bacteria, which can grow with (rather simple) azo compounds. These specifically adapted microorganisms synthesize true azoreductases, which reductively cleave the azo group in the presence of molecular oxygen. Much more common is the reductive cleavage of azo dyes under anaerobic conditions. These reactions usually occur with rather low specific activities but are extremely unspecific with regard to the organisms involved and the dyes converted. In these unspecific anaerobic processes, low-molecular weight redox mediators (e.g. flavins or quinones) which are enzymatically reduced by the cells (or chemically by bulk reductants in the environment) are very often involved. These reduced mediator compounds reduce the azo group in a purely chemical reaction. The (sulfonated) amines that are formed in the course of these reactions may be degraded aerobically. Therefore, several (laboratory-scale) continuous anaerobic/aerobic processes for the treatment of wastewaters containing azo dyes have recently been described.  相似文献   

15.
Biodegradation of chlorinated phenolic compounds   总被引:1,自引:0,他引:1  
Chlorophenolic compounds are generated from a number of industrial manufacturing processes including pulp and paper manufacture. These compounds are found to be toxic and recalcitrant and hence their discharge into the environment must be regulated. Slow and partial degradation of chlorophenols under aerobic and anaerobic natural environment has been observed. Aerobic biodegradation of chlorophenols proceeds through the formation of catechols while under anaerobic conditions, reductive dehalogenation is the preferred metabolic pathway. Number and position of chlorine substituents on the phenolic ring has influence on the rate and extent of biodegradation of chlorophenols. In engineered systems, acclimatization of biomass to chlorophenols markedly enhances the biodegradation ability by reducing the initial lag phase and by countering inhibition. Partial removal of chlorophenols between 40-60% is usually observed in aerobic and anaerobic processes. Removal can be enhanced by a combination of aerobic and anaerobic operations.  相似文献   

16.
Recently there has been a growing demand for information on the biodegradability and microbial toxicity of xenobiotic compounds. The environmental fate and effect of these chemicals in aerobic and anaerobic conditions has been extensively studied using a variety of different methods. This paper reviews the different protocols, equipment and instruments used in anaerobic biodegradation and activity tests, including the more sophisticated automated techniques recently developed. The different systems for detecting biogas production are given particular attention. As well as gasometric methods, the different instrumental techniques used to follow the fate of compounds under anaerobic conditions, via analysis of substrate consumption and product formation are evaluated.  相似文献   

17.
Once released into the environment, petroleum is exposed to biological and physical weathering processes which can lead to the formation and accumulation of highly recalcitrant polar compounds. These polar compounds are often challenging to analyse and can be present as an “unresolved complex mixture” (UCM) in total petroleum hydrocarbon (TPH) analyses and can be mistaken for natural organic matter. Existing research on UCMs comprised of polar compounds is limited, with a majority of the compounds remaining unidentified and their long-term persistence unknown. Here, we investigated the potential biodegradation of these recalcitrant polar compounds isolated from weathered diesel contaminant, and the changes in the microbial community composition associated with the biodegradation process. Microcosms were used to study the biodegradability of the polar compounds under various aerobic and anaerobic conditions and the results compared against the biodegradation of fresh diesel. Under all conditions tested, the majority of the polar UCM contaminant remained recalcitrant to biodegradation. The degradation was limited to the TPH portion of the polar UCM, which represented a minor fraction of the total polar UCM concentration. Changes in microbial community composition were observed under different redox conditions and in the presence of different contaminants. This work furthers the understanding of the biodegradation and long-term recalcitrance of polar compounds formed through weathering at contaminated legacy sites.  相似文献   

18.
Toxic aromatic pollutants, concentrated in industrial wastes and contaminated sites, can potentially be eliminated by low cost bioremediation systems. Most commonly, the goal of these treatment systems is directed at providing optimum environmental conditions for the mineralization of the pollutants by naturally occurring microflora. Electrophilic aromatic pollutants with multiple chloro, nitro and azo groups have proven to be persistent to biodegradation by aerobic bacteria. These compounds are readily reduced by anaerobic consortia to lower chlorinated aromatics or aromatic amines but are not mineralized further. The reduction increases the susceptibility of the aromatic molecule for oxygenolytic attack. Sequencing anaerobic and aerobic biotreatment steps provide enhanced mineralization of many electrophilic aromatic pollutants. The combined activity of anaerobic and aerobic bacteria can also be obtained in a single treatment step if the bacteria are immobilized in particulate matrices (e.g. biofilm, soil aggregate, etc.). Due to the rapid uptake of oxygen by aerobes and facultative bacteria compared to the slow diffusion of oxygen, oxygen penetration into active biofilms seldom exceeds several hundred micrometers. The anaerobic microniches established inside the biofilms can be applied to the reduction of electron withdrawing functional groups in order to prepare recalcitrant aromatic compounds for further mineralization in the aerobic outer layer of the biofilm.Aside from mineralization, polyhydroxylated and chlorinated phenols as well as nitroaromatics and aromatic amines are susceptible to polymerization in aerobic environments. Consequently, an alternative approach for bioremediation systems can be directed towards incorporating these aromatic pollutants into detoxified humic-like substances. The activation of aromatic pollutants for polymerization can potentially be encouraged by an anaerobic pretreatment step prior to oxidation. Anaerobic bacteria can modify aromatic pollutants by demethylating methoxy groups and reducing nitro groups. The resulting phenols and aromatic amines are readily polymerized in a subsequent aerobic step.  相似文献   

19.
Compound-specific isotope analysis has the potential to distinguish physical from biological attenuation processes in the subsurface. In this study, carbon and hydrogen isotopic fractionation effects during biodegradation of benzene under anaerobic conditions with different terminal-electron-accepting processes are reported for the first time. Different enrichment factors () for carbon (range of −1.9 to −3.6‰) and hydrogen (range of −29 to −79‰) fractionation were observed during biodegradation of benzene under nitrate-reducing, sulfate-reducing, and methanogenic conditions. These differences are not related to differences in initial biomass or in rates of biodegradation. Carbon isotopic enrichment factors for anaerobic benzene biodegradation in this study are comparable to those previously published for aerobic benzene biodegradation. In contrast, hydrogen enrichment factors determined for anaerobic benzene biodegradation are significantly larger than those previously published for benzene biodegradation under aerobic conditions. A fundamental difference in the previously proposed initial step of aerobic versus proposed anaerobic biodegradation pathways may account for these differences in hydrogen isotopic fractionation. Potentially, C-H bond breakage in the initial step of the anaerobic benzene biodegradation pathway may account for the large fractionation observed compared to that in aerobic benzene biodegradation. Despite some differences in reported enrichment factors between cultures with different terminal-electron-accepting processes, carbon and hydrogen isotope analysis has the potential to provide direct evidence of anaerobic biodegradation of benzene in the field.  相似文献   

20.
Microbial decolorization and degradation of synthetic dyes: a review   总被引:3,自引:0,他引:3  
The synthesis of dyes and pigments used in textiles and other industries generate the hazardous wastes. A dye is used to impart color to materials of which it becomes an integral part. The waste generated during the process and operation of the dyes commonly found to contain the inorganic and organic contaminant leading to the hazard to ecosystem and biodiversity causing impact on the environment. The amount of azo dyes concentration present in wastewater varied from lower to higher concentration that lead to color dye effluent causing toxicity to biological ecosystem. The physico-chemical treatment does not remove the color and dye compound concentration. The decolorization of the dye takes place either by adsorption on the microbial biomass or biodegradation by the cells. Bioremediation takes place by anaerobic and/or aerobic process. The anaerobic process converts dye in toxic amino compounds which on further treatment with aerobic reaction convert the intermediate into CO2 biomass and inorganics. In the present review the decolorization and degradation of azo dyes by fungi, algae, yeast and bacteria have been cited along with the anaerobic to aerobic treatment processes. The factors affecting decolorization and biodegradation of azo dye compounds such as pH, temperature, dye concentration, effects of CO2 and Nitrogen, agitation, effect of dye structure, electron donor and enzymes involved in microbial decolorization of azo dyes have been discussed. This paper will have the application for the decolorization and degradation of azo dye compound into environmental friendly compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号