共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacteriophage present in wine can attack bacterial starter cultures and inhibit the malolactic fermentation. The possibility of starter culture failure due to phage attack was studied in a commercial dry red wine of pH 3·23, inoculated with a multiple strain starter culture. During two stages of malolactic fermentation, bacterial growth and malate degradation in the wine were inhibited. A phage capable of lysing isolates of Leuconostoc oenos was isolated from the wine. The isolated phage had an icosahedral head of 42–45 nm diameter and a flexible, regularly cross-striated tail 197–207 nm long with a small baseplate. The results confirm that phage can attack bacterial starter cultures in wine at low pH. 相似文献
2.
Manfred Rizzi Petra Erlemann Ngoc-Anh Bui-Thanh Hanswerner Dellweg 《Applied microbiology and biotechnology》1988,29(2-3):148-154
Summary Xylose reductase from the xylose-fermenting yeastPichia stipitis was purified to electrophoretic homogeneity via ion-exchange, gel and affinity chromatography. At physiological pH values the thermodynamic equilibrium constant was determined to be 0.575x1010 (l·mol-1). Product inhibiton studies are reported which clearly show that the kinetic mechanism of the xylose reductase is ordered-bi-bi with isomerisation of a stable enzyme form. 相似文献
3.
4.
5.
Summary Utilization and fermentation of xylose by the yeasts Pachysolen tannophilus I fGB 0101 and Pichia stipitis 5773 to 5776 under aerobic and anaerobic conditions are investigated. Pa. tannophilus requires biotin and thiamine for growth, whereas Pi. stipitis does not, and growth of both yeasts is stimulated by yeast extract. Pi. stipitis converts xylose (30 g/l) to ethanol under anaerobic conditions with high yields of 0,40 and it produces only low amounts of xylitol. The yield coefficient is further increased at lower xylose concentrations.Publication Nr. 2 of this series: Eur. J. Appl. Microbiol. Biotechnol. (1983) 17, 287–291. 相似文献
6.
Malolactic fermentation (MLF) in wine can be accomplished by relying on the natural microflora or by inducing through inoculation of a specific strain(s) of malolactic bacteria, primarily strains of Leuconostoc oenos. Problems with inducing MLF include intrinsic factors of the grape must such as pH, presence of sulfur dioxide, and ethanol in addition to antagonism of malolactic bacteria by wine yeast. Current methods and new technology to improve the predictability of MLF are discussed. 相似文献
7.
A continuous process to deacidify apple juices and cider was developed by entrapping Oenococcus oeni in LentiKats, a new polyvinyl alcohol hydrogel. For a residence time of 0.55 h, malic acid was completely converted into lactic acid when the LentiKats bioreactor was fed with apple juice at pH 4.46 and 3.95 and thirty three percent of initial malic acid (6.7 g l–1) was converted when the initial apple juice pH was 2.30. The optimal malolactic activity of this bioreactor was obtained at 30°C and a 50% reduction in malic acid conversion was measured between 15°C and 20°C, at a residence time of 0.3 h. The LentiKats bioreactor gave better performance than continuous reactor with Oenococcus oeni immobilised in alginate beads (specific malic acid consumption increased by a factor of 4.6) due to the increase of the ratio external surface to volume, allowing better mass transfer. 相似文献
8.
9.
By using the luciferase-luciferin ATP assay and whole cells of Leuconostoc oenos, we have demonstrated that malolactic fermentation does yield ATP. This energy-yielding mechanism did not occur in a cell extract and was inhibited in the presence of dicyclohexylcarbodiimide or an ionophore such as monensin. A lactate:proton efflux mechanism for this proposed pathway is presented. 相似文献
10.
11.
Energy conservation in malolactic fermentation by Lactobacillus plantarum and Lactobacillus sake 总被引:1,自引:0,他引:1
A comparably poor growth medium containing 0.1% yeast extract as sole non-defined constituent was developed which allowed
good reproducible growth of lactic acid bacteria. Of seven different strains of lactic acid bacteria tested, only Lactobacillus plantarum and Lactobacillus sake were found to catalyze stoichiometric conversion of l-malate to l-lactate and CO2 concomitant with growth. The specific growth yield of malate fermentation to lactate at pH 5.0 was 2.0 g and 3.7 g per mol
with L. plantarum and L. sake, respectively. Growth in batch cultures depended linearly on the malate concentration provided. Malate was decarboxylated
nearly exclusively by the cytoplasmically localized malo-lactic enzyme. No other C4-dicarboxylic acid-decarboxylating enzyme activity could be detected at significant activity in cell-free extracts. In pH-controlled
continuous cultures, L. plantarum grew well with glucose as substrate, but not with malate. Addition of lactate to continuous cultures metabolizing glucose
or malate decreased cell yields significantly. These results indicate that malo-lactic fermentation by these bacteria can
be coupled with energy conservation, and that membrane energetization and ATP synthesis through this metabolic activity are
due to malate uptake and/or lactate excretion rather than to an ion-translocating decarboxylase enzyme. 相似文献
12.
Microbiology of the malolactic fermentation: Molecular aspects 总被引:4,自引:0,他引:4
Aline Lonvaud-Funel 《FEMS microbiology letters》1995,126(3):209-214
Abstract Malolactic fermentation conducted by lactic acid bacteria follows alcoholic fermentation during winemaking, and several positive effects make it indispensable for most wines. Research has focused on the growth and physiology of lactic acid bacteria in wine; resulting in the design of malolactic starter cultures. Future work on these starters will concentrate on aromatic changes as additional criteria for strain selection. Although the main features of the malolactic enzyme and its gene are known, the detailed mechanism of the malolactic reaction remains unclear. Cloning and expression of this activity in enological strains of Saccharomyces cereuisiae might be one of the next most important advances in the control of malic acid degradation in wine. 相似文献
13.
14.
Role of malolactic fermentation in lactic acid bacteria 总被引:7,自引:0,他引:7
Although decarboxylation of malate to lactate by malolactic enzyme does not liberate biologically available energy (e.g., ATP, NADH), the growth rate of many malolactic bacteria is greatly enhanced by malolactic fermentation. The deacidification of the medium due to malate dissipation cannot fully account for this situation. The chemiosmotic theory postulates that another form of energy could generated by translocation of protons through the membrane coupled to end-product efflux. Konings et al. showed that this theory is indeed applicable to lactate efflux in Streptococcus cremoris at pH 7.0. A similar mechanism could account for the observed increased activity in malolactic bacteria. The study in wild type and mutant strains of Streptococcus lactis unable to carry out malolactic fermentation led us to the following conclusions: (1) under glucose non-limiting conditions, malolactic fermentation helps to maintain pH of the medium at a certain level; (2) during glucose limited growth, malolactic fermentation could be coupled with an energetic process independent from that mentioned above. 相似文献
15.
Goerges S Aigner U Silakowski B Scherer S 《Applied and environmental microbiology》2006,72(1):313-318
Many bacteria are known to inhibit food pathogens, such as Listeria monocytogenes, by secreting a variety of bactericidal and bacteriostatic substances. In sharp contrast, it is unknown whether yeast has an inhibitory potential for the growth of pathogenic bacteria in food. A total of 404 yeasts were screened for inhibitory activity against five Listeria monocytogenes strains. Three hundred and four of these yeasts were isolated from smear-ripened cheeses. Most of the yeasts were identified by Fourier transform infrared spectroscopy. Using an agar-membrane screening assay, a fraction of approximately 4% of the 304 red smear cheese isolates clearly inhibited growth of L. monocytogenes. Furthermore, 14 out of these 304 cheese yeasts were cocultivated with L. monocytogenes WSLC 1364 on solid medium to test the antilisterial activity of yeast in direct cell contact with Listeria. All yeasts inhibited L. monocytogenes to a low degree, which is most probably due to competition for nutrients. However, one Candida intermedia strain was able to reduce the listerial cell count by 4 log units. Another four yeasts, assigned to C. intermedia (three strains) and Kluyveromyces marxianus (one strain), repressed growth of L. monocytogenes by 3 log units. Inhibition of L. monocytogenes was clearly pronounced in the cocultivation assay, which simulates the conditions and contamination rates present on smear cheese surfaces. We found no evidence that the unknown inhibitory molecule is able to diffuse through soft agar. 相似文献
16.
17.
Pear P. Ueng Cecilie A. Hunter Cheng-shung Gong George T. Tsao 《Biotechnology letters》1981,3(6):315-320
Summary With pure D-xylulose as substrate, Schizosaccharomyces pombe produced ethanol in good yield with low quantities of polyols as by-products. Saccharomyces cerevisiae was found to be a good alcohol producer in glucose but not as good in D-xylulose. Other yeast cultures converted D-xylulose to xylitol, or D-arabitol or both, with lower ethanol yield. 相似文献
18.
19.
目的用斯达油脂酵母(Lipomyces starkeyi)作为发酵菌株,以纯木糖溶液为油脂发酵原料,对L.starkeyi利用木糖积累油脂进行系统研究。方法 L.starkeyi于斜面培养基中活化后,接种于YPD液体培养基,于30℃、200 r/min摇床培养。在摇瓶中培养一段时间后,测定发酵液细胞浓度,离心发酵液收集细胞。将离心后得到的菌体加入木糖溶液重悬,并转接于含50 mL木糖溶液的250 mL摇瓶中进行发酵生产。结果相比一阶段法,两阶段发酵方法可以在更短的时间内达到较高的油脂含量,油脂含量能够达到细胞自身干重的60%以上。实验发现高菌龄酵母产油速度更快;并且初始木糖浓度高达120 g/L时,酵母细胞仍然能够高效合成油脂。结论 L.starkeyi能够有效利用木糖进行发酵产生油脂,是以木质纤维素为原料生产微生物油脂的优良菌种。 相似文献