共查询到20条相似文献,搜索用时 15 毫秒
1.
Although hypothermic whole organ perfusion is widely used in attempts to preserve organs for transplantation and to preserve the myocardium during cardiac surgery, little is known about substrate metabolism during hypothermia. A knowledge of metabolism utilization during hypothermic whole organ perfusion might allow optimal substrate choice for preservation of energy stores and functional capacity. Separate groups of hearts from fed rats were perfused 30 minutes with Krebs Henseleit bicarbonate buffer containing 5mM glucose-U-14C, at 37°, 25°, 20°, 15° and 10°C. From 37° to 15°C, heart rate decreased 90% and coronary flow decreased 25%. Glucose uptake decreased 5 fold from 37° to 10°C while 14CO2 and lactate production decreased 50 fold and 28 fold, respectively. Myocardial glycogen was stable until 10°C at which point increased glycogenolysis occured. The incorporation of 14C in glycogen was stable at 37°, 30° and 25° but decreased progressively with lower temperatures. The percent recovery of glucose as 14CO2, lactate and 14C in glycogen decreased from 73% at 37° at 10°C. Our studies indicate that metabolism of glucose is greatly reduced but significant above 15°C. 相似文献
2.
C A Slentz J M Davis D L Settles R R Pate S J Settles 《Journal of applied physiology》1990,69(3):989-994
This study compared the effects of glucose feeding and water on endurance performance, glycogen utilization, and endocrine responses to exhaustive running in rats. Forty-eight trained rats ran at approximately 70% peak O2 consumption (VO2) while receiving, via gavage, 1 ml of an 18% glucose solution or water every 30 min. Glucose- (GF) and water-fed rats (WF) were pair matched and killed at rest, at 25 or 50% of their previously determined run time to exhaustion, or at exhaustion. Run times to exhaustion were 4.6 +/- 1.0 and 3.0 +/- 0.9 h in GF and WF rats, respectively. In WF rats, plasma glucose declined continuously from a resting value of 7.4 +/- 0.5 to 1.8 +/- 0.5 mM at exhaustion and was lower than in GF rats at all exercise time points. In GF rats, glucose was maintained at 7.4 +/- 0.5 mM for 3 h before dropping to 3.9 +/- 0.6 mM at exhaustion. In both groups, liver and muscle glycogen decreased dramatically during the 1st h and changed only slightly thereafter. During the 3rd h, glycogen levels were maintained in GF rats but continued to decrease in WF rats (P less than 0.05). Insulin decreased during exercise and was not significantly different between groups. Glucagon, epinephrine, norepinephrine, and corticosterone increased to a greater extent in WF than in GF rats during the first 3 h of exercise.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
4.
John C. Lawrence Jr. Joseph Larner C. Ronald Kahn Jesse Roth 《Molecular and cellular biochemistry》1978,22(2-3):153-158
Summary Autoantibodies to the insulin receptor mimic the effects of insulin on glycogen synthase and phosphorylase. The interaction of antibodies with adipocyte cell surface insulin receptors seems sufficient to promote stable changes in the activities of these intracellular enzymes, suggesting that internalization or processing of insulin is not important in the generation of these biological responses. 相似文献
5.
Plasma glucagon, insulin and glucose responses to intravenous arginine infusion in the rat 总被引:1,自引:0,他引:1
S F Kuku J B Jaspan D S Emmanouel A I Katz A H Rubenstein 《Hormones et métabolisme》1978,10(2):99-100
Plasma glucagon (IRG), insulin and glucose responses to intravenous arginine infusion in the rat were studied. Three doses of arginine hydrochloride were infused into fasted rats: 0.2 gm/kg b.w., 0.5 gm/kg b.w., and 1 gm/kg b.w. The 0.2 gm/kg dose did not result in significant elevation of plasma IRG or insulin. Both the 0.5 and 1 gm/kg doses produced a significant increase in glucagon and insulin levels within 5 minutes of starting the infusion. The 1 gm/kg dose was most effective in stimulating secretion of both hormones. This dose produced a 250% rise in the plasma IRG compared to 80% peak rise with the 0.5 gm/kg dose (p less than .01) and 1055% rise in insulin levels compared to a peak level of 225% above baseline with the 0.5 gm/kg dose (p less than .001). These results demonstrate the effectiveness of intravenous arginine in the stimulation of glucagon and insulin secretion in the rat. 相似文献
6.
Isolated liver cells from 24 h starved rats were incubated in Krebs-Ringer buffer containing 4% albumin. In the presence of 10, 20 and 30 mM glucose, addition of insulin stimulated net glycogen production by 52, 39 and 20%, respectively. 2 . 10(-9) M insulin was required for half-maximal stimulation. Increases of glycogen production and of glycogen synthase a activity were observed after 15-30 min of incubation with insulin. The stimulatory effect of insulin was additive to that of lithium. In agreement with the literature, insulin antagonized the inhibitory action of suboptimal doses of glucagon on glycogen deposition whereby a decrease of glucagon-elevated cyclic AMP levels was observed. In addition, we found that insulin also decreased the basal cyclic AMP levels in the absence of added glucagon by 22%. It is concluded that physiological concentrations of insulin stimulate net glycogen deposition in hepatocytes from fasted rats; the decrease of basal cyclic AMP levels upon insulin addition may play a role in the mechanism of the hormone action. 相似文献
7.
8.
9.
The relationships between plasma glucose, insulin and glucagon were studied in geese made diabetic by subtotal pancreatectomy. As early as the first hours after the operation, the plasma glucose increases and a permanent diabetes develops. This diabetic state is characterized by two features: a very low plasma insulin level, which does not vary during the survival of the diabetic animals and a concentration of plasma glucagon (of pancreatic origin) which transiently diminishes then rises far above the normal level, and is correlated with the basal concentration of plasma glucose. The impaired glucose tolerance observed in diabetic animals is related to the suppression of the glucose-insulin and glucose-glucagon feedback mechanisms. 相似文献
10.
Insulin binding and glucose oxidation were measured in isolated rat adipocytes in the presence of several anesthetics; ethanol, n-octanol, pentobarbital, chlorpromazine and tetracaine. Ethanol and chlorpromazine, at anesthetic and pentobarbitol at sub-anesthetic concentrations are inhibitory to both basal and insulin stimulated rates of glucose oxidation. At all concentrations of ethanol, pentobarbital or chlorpromazine tested binding of insulin is not affected. Since anesthetics may alter membrane fluidity, it is suggested that an anesthetic-induced increase in membrane fluidity beyond that which occurs at 37°C is detrimental to glucose oxidation. Of the 5 anesthetics examined, only chlorpromazine (10 μM or less) and tetracaine (500 μM) stimulate glucose oxidation. These two agents are known to bind to a cell's cytoskeletal system; the binding of chlorpromazine to microtubules is entropy driven. The temperature and concentration dependence of chlorpromazine stimulation of glucose oxidation (transport) are consistent with this form of binding. It is proposed that chlorpromazine binds to the cytoskeletal system of the adipocyte and that this system is normally restrictive to the motion of membrane proteins. Disruption of the cytoskeletal system by chlorpromazine or tetracaine would increase the frequency of insulin-receptor and glucose-carrier contact. Activation of glucose transport could ensue. 相似文献
11.
12.
13.
The authors examined the quantitative changes in the glycogen content in rat's small intestinal mucosa under the effect of insulin. They found that glycogen content increases significantly during the first 60 minutes, then it decreases gradually, and regains the control value only after 6 hours. It appears that as regards its metabolic activity, the small intestinal mucosa is not an insulin resistant organ. 相似文献
14.
Jensen J Jebens E Brennesvik EO Ruzzin J Soos MA Engebretsen EM O'Rahilly S Whitehead JP 《American journal of physiology. Endocrinology and metabolism》2006,290(1):E154-E162
Insulin-stimulated glucose uptake and incorporation of glucose into skeletal muscle glycogen contribute to physiological regulation of blood glucose concentration. In the present study, glucose handling and insulin signaling in isolated rat muscles with low glycogen (LG, 24-h fasting) and high glycogen (HG, refed for 24 h) content were compared with muscles with normal glycogen (NG, rats kept on their normal diet). In LG, basal and insulin-stimulated glycogen synthesis and glycogen synthase activation were higher and glycogen synthase phosphorylation (Ser(645), Ser(649), Ser(653), Ser(657)) lower than in NG. GLUT4 expression, insulin-stimulated glucose uptake, and PKB phosphorylation were higher in LG than in NG, whereas insulin receptor tyrosyl phosphorylation, insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, and GSK-3 phosphorylation were unchanged. Muscles with HG showed lower insulin-stimulated glycogen synthesis and glycogen synthase activation than NG despite similar dephosphorylation. Insulin signaling, glucose uptake, and GLUT4 expression were similar in HG and NG. This discordant regulation of glucose uptake and glycogen synthesis in HG resulted in higher insulin-stimulated glucose 6-phosphate concentration, higher glycolytic flux, and intracellular accumulation of nonphosphorylated 2-deoxyglucose. In conclusion, elevated glycogen synthase activation, glucose uptake, and GLUT4 expression enhance glycogen resynthesis in muscles with low glycogen. High glycogen concentration per se does not impair proximal insulin signaling or glucose uptake. "Insulin resistance" is observed at the level of glycogen synthase, and the reduced glycogen synthesis leads to increased levels of glucose 6-phosphate, glycolytic flux, and accumulation of nonphosphorylated 2-deoxyglucose. 相似文献
15.
16.
Glucose, insulin and somatostatin infusion for the determination of insulin resistance in liver cirrhosis 总被引:1,自引:0,他引:1
A V Greco A G Rebuzzi L Altomonte R Manna A Bertoli G Ghirlanda 《Hormones et métabolisme》1979,11(10):547-549
Twelve patients with liver cirrhosis and ten normal subjects were studied. Using a constant intravneous infusion of glucose, insulin and somatostatin over 2 1/2 hours we determined the stteady state plasma glucose level (SSPG) in order to measure insulin resistance. The results demonstrated that the cirrhotic patients were insulin resistant compared to normals and that plasma glucagon does not account for the insulin resistance in these patients. 相似文献
17.
18.
Calorigenic effect of insulin in hypothermic dogs 总被引:1,自引:0,他引:1
Therminarias A.; Chirpaz M. F.; Lucas A.; Tanche M. 《Journal of applied physiology》1979,47(2):342-346
19.
Lin Y Itani SI Kurowski TG Dean DJ Luo Z Yaney GC Ruderman NB 《American journal of physiology. Endocrinology and metabolism》2001,281(1):E8-E15
Numerous studies have shown a correlation between changes in protein kinase C (PKC) distribution and/or activity and insulin resistance in skeletal muscle. To investigate which PKC isoforms might be involved and how they affect insulin action and signaling, studies were carried out in rat soleus muscle incubated with phorbol esters. Muscles preincubated for 1 h with 1 microM phorbol 12,13-dibutyrate (PDBu) showed an impaired ability of insulin to stimulate glucose incorporation into glycogen and a translocation of PKC-alpha, -betaI, -theta, and -epsilon, and probably -betaII, from the cytosol to membranes. Preincubation with 1 microM PDBu decreased activation of the insulin receptor tyrosine kinase by insulin and to an even greater extent the phosphorylation of Akt/protein kinase B and glycogen synthase kinase-3. However, it failed to diminish the activation of phosphatidylinositol 3'-kinase by insulin. Despite these changes in signaling, the stimulation by insulin of glucose transport (2-deoxyglucose uptake) and glucose incorporation into lipid and oxidation to CO2 was unaffected. The results indicate that preincubation of skeletal muscle with phorbol ester leads to a translocation of multiple conventional and novel PKC isoforms and to an impairment of several, but not all, events in the insulin-signaling cascade. They also demonstrate that these changes are associated with an inhibition of insulin-stimulated glycogen synthesis but that, at the concentration of PDBu used here, glucose transport, its incorporation into lipid, and its oxidation to CO2 are unaffected. 相似文献
20.
S G Laychock 《Life sciences》1990,47(25):2307-2316
Insulin secretion from beta cells of the islets of Langerhans in the endocrine pancreas is regulated by glucose, glucose metabolites, metabolic intermediates such as ATP, acetyl CoA and reduced pyridine nucleotides, and classical second messengers. Receptor responses transduced by guanine nucleotide binding proteins modulate metabolic activity, the generation of second messengers, and cell depolarization during stimulus-response coupling in the beta cell. This review will consider insulin secretion as regulated by glucose metabolic pathways and second messengers. 相似文献