首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The temperature and pH dependence of water exchange has been studied on isolated erythrocytes suspended in isotonic buffered solutions. At pH 7.4 a break in the Arrhenius plot of water exchange time at around 26°C was found. The mean value of the apparent activation energy of the water exchange time at temperatures higher than that of the discontinuity was 5.7 kcal/mole (±0.4); at lower temperatures the values of the apparent activation energy were below 1.4 kcal/mole. The pH dependence of water exchange time of isolated erythrocytes revealed a marked increase of the water exchange time values in the acid range of pH; a much smaller variation of the same parameter occurs between pH 7.0 and 8.0. These finding could be correlated with other processes involving erythrocyte membranes that showed similar pH and temperature dependence and were considered to indicate state transitions in the membranes. It is suggested that the temperature and pH effects on water diffusion indicate that conformational changes and cooperative effects are implicated in the mechanism of this transport process.Institute for Isotopic and Molecular Technology.  相似文献   

2.
Extents of adsorption of bovine serum albumin from aqueous solution to the surface of alumina, silica, carbon and chromium powder have been studied as function of time for various values of bulk protein concentration, pH, ionic strength and temperature. The rates of adsorption in all cases have been observed to fit in the first order rate equation with two different rate constants Ka1 and Ka2. Effects of addition of SDS, CTAB and neutral salts on values of Ka1 and Ka2 have also been studied. Using Arrhenius equation the activation energy values Ea1 and Ea2 have been evaluated from the values of Ka1 and Ka2 at three different temperatures, respectively. The corresponding values of enthalpy of activation (delta H*), entropy of activation (delta S*), and free energy of activation (delta G*) have been evaluated using Eyring's equation of absolute reaction rate. The mechanism of protein adsorption has been discussed in the light of basic principles of absolute reaction rate. It has been found that for Ka1 the delta H*1 greater than T delta S*1 and for Ka2 T delta S*2 greater than H*2, i.e. the anchorage and binding of protein to the surface are enthalpy controlled processes whereas the surface denaturation as well as rearrangement and folding is an entropy controlled process. The role of diffusion on rate of adsorption has also been discussed.  相似文献   

3.
In the context of the metabolic theory of ecology (MTE), the activation energy (E) reflects the temperature dependence of metabolism and organism performance in different activities, such as calling behavior. In this contribution we test the role of temperature in affecting local amphibian community structure, particularly the number of species engaged in calling behavior across a temperature gradient. Toward this aim, we compiled phenological calling activity for 52 Neotropical anuran communities. For each community we estimated the activation energy of calling behavior (E), finding values significantly higher than previous reports. A wide range of methodological issues with the potential to produce overestimated E‐values were shown to have no significant effect on reported E‐values, supporting a biological interpretation of their high values and of geographic trends. Further, a path analysis related variation in E among communities with communities’ phylogenetic structure, local environmental conditions, richness, and seasonality. The decrease of activation energy at higher latitudes and less productive environments suggests that amphibians’ activity could become more dependent of internal individuals’ resources once external sources are reduced. The increase in phylogenetic attraction with latitude points to a rise in the role of niche conservatism and community filtering operating over conserved traits. Finally, flexibility in activation energy related to amphibians’ calling could be an important and poorly recognized determinant of their thermal dependence. The temporal structuring of amphians’ communities was related here with the interplay between ecological and evolutionary processes operating at different scales. Our results support the view of activation energy as an important parameter of biodiversity organization, which unravels the effects of ecological and evolutionary processes on biodiversity structure and function.  相似文献   

4.
A number of breaks were recorded on the curve of Arrhenius relationship of the rate constant of the dye 1-anilino-8-naphthalenesulphonate sodium salt (ANS) input into human erythrocytes of 20, 28, 36, 42 and 46 degrees C. Variations in the values of activation energies within the temperature range of 28-36 degrees and 42-46 degrees C obtained in various blood samples allow to consider these temperatures as those at which structural changes of the membranes take place. The values of activation energy of the process for temperature "conformers" of the erythrocyte membrane are 12(10-20 degrees C), 26.5 (20-28 degrees C), 34.2(36-42 degrees C) and 47 kcal/mol (t is greater than 46 degrees C). Within the temperature range of 28-36 degrees and 42-46 degrees C an irreversible decrease of permeability to ANS of the erythrocyte ghost after their incubation for 10 min at increased temperatures were observed. Thus the temperature regions of the change in erythrocyte permeability correspond to those at which the resealing of ghost takes place. The break in Arrhenius graph at 20 degrees C seems to characterize a highly cooperative "point" transition. The lipid nature of the initiator of structural transition within 28-36 degrees C is proved by a sharp increase of the permeability of liposomes prepared from erythrocyte membrane lipids to ANS at 28 degrees C. The nature of the initiators of two other thermal transitions is discussed.  相似文献   

5.
Summary Rates of human red blood cell hemolysis were measured as a function of temperature. Three distinct temperature intervals for hemolysis were noted: a) At temperatures equal to or less than 37°C no hemolysis was observed for the duration of the incubation (30 hr). b) For temperatures exceeding 45°C hemolysis rates are rapid and are accompanied by gross changes in cellular morphology. The activation energy for hemolysis is 80 kcal/mole; this value is characteristic of protein denaturation and enzyme inactivation suggesting that these processes contribute to hemolysis at these high temperatures. c) Between 38 and 45°C the energy of activation is 29 kcal/mole, indicating that a fundamentally different process than protein inactivation is responsible for hemolysis at these relatively low temperatures. A mechanism based on the concept of the critical bilayer assembly temperature of cell membranes (N.L. Gershfeld,Biophys. J. 50:457–461, 1986) accounts for hemolysis at these relatively mild temperatures: The unilamellar state of the membrane is stable at 37°C, but is transformed to a multibilayer when the temperature is raised; hemolysis results because formation of the multibilayer requires exposing lipid-free areas of the erythrocyte surface. An analysis of the activation energy for hemolysis is presented that is consistent with the proposed unilamellar-multibilayer transformation.  相似文献   

6.
Activation energy EA of the sulfate ions transport process across human erythrocyte membranes modified by reductive methylation has been measured. It has been found that exhaustive reductive methylation (3 times) with formaldehyde and borohydride inhibits the sulfate-equilibrium exchange, by a maximum of about 40%. However, methylation has no measurable effect on activation energy, since the evaluated EA values for control and methylated cells remain the same within the experimental error range.  相似文献   

7.
We have determined experimentally the temperature dependence of human erythrocyte spectrin dimer intrinsic viscosity at shear rates 8-12 s-1 using a Cartesian diver viscometer. We find that the intrinsic viscosity decreases from 43 +/- 3 ml/g at 4 degrees C to 34 +/- 3 ml/g when the temperature is increased to 38 degrees C. Our results show that spectrin dimers are flexible worm-like macromolecules with persistence length about 20 nm and that the mean square end-to-end distance for this worm-like macromolecules decreases when the temperature is increased. This implies that the spectrin dimer internal energy decreases when the end-to-end distance is increased and that the free energy increase associated with making the end-to-end distance longer than the equilibrium value for the free molecules is of entropic origin. The temperature dependence of the erythrocyte membrane shear modulus reported previously in the literature therefore appears mainly to be due to temperature dependent alterations in the membrane skeleton topology.  相似文献   

8.
The temperature dependence of ATPase activities and stearic acid spin label motion in red blood cells of normal and MH-susceptible pigs have been examined. Arrhenius plots of red blood cell ghost Ca-ATPase and calmodulin-stimulable Ca-ATPase activities were identical for both normal and MH erythrocyte ghosts. Arrhenius plots of Mg-ATPase activity exhibited a break (defined as a change in slope) at 24 degrees C in both MH and normal erythrocyte ghosts. However, below 24 degrees C the apparent activation energy for this activity was less in MH than normal ghosts. To determine whether breaks in ATPase Arrhenius plots could be correlated with changes in the physical state of the red blood cell membrane, the spin label 16-doxyl-stearate was introduced into the bilayer of both erythrocyte ghosts and red blood cells. With both ghosts and intact cells, at each temperature examined, the mobility of the probe in the lipid bilayer, as measured by electron paramagnetic resonance, was greater in normal than in MH membranes. While there were no breaks in Arrhenius plots for probe motion in the erythrocyte ghosts, the apparent activation energy for probe motion was significantly greater in normal than in MH ghost membranes. While there was no break in the Arrhenius plot of probe motion in normal intact red blood cell membranes, there were breaks in the Arrhenius plot of probe motion at both 24 and 33 degrees C in intact MH red blood cell membranes. Based on the altered temperature dependence of Mg-ATPase activity and spin probe motion in membranes derived from MH red blood cells, we conclude that there may be a generalized membrane defect in MH pigs which is reflected in the red blood cell as an altered membrane composition or organization.  相似文献   

9.
The aim of our investigation was to study the red blood cell (RBC) membrane effects of NaNO(2)-induced oxidative stress. Hyperpolarization of erythrocyte membranes and an increase in membrane rigidity have been shown as a result of RBC oxidation by sodium nitrite. These membrane changes preceded reduced glutathione depletion and were observed simultaneously with methemoglobin (metHb) formation. Changes of the glutathione pool (total and reduced glutathione, and mixed protein-glutathione disulfides) during nitrite-induced erythrocyte oxidation have been demonstrated. The rates of intracellular oxyhemoglobin and GSH oxidation highly increased as pH decreased in the range of 7.5-6.5. The activation energy of intracellular metHb formation obtained from the temperature dependence of the rate of HbO(2) oxidation in RBC was equal to 16.7+/-1.6 kJ/mol in comparison with 12.8+/-1.5 kJ/mol calculated for metHb formation in hemolysates. It was found that anion exchange protein (band 3 protein) of the erythrocyte membrane does not participate significantly in the transport of nitrite ions into the erythrocytes as band 3 inhibitors (DIDS, SITS) did not decrease the intracellular HbO(2) oxidation by extracellular nitrite.  相似文献   

10.
The conductance behavior of some electrolyte-sucrose-water systems has been investigated at several temperatures above and below the saturation temperature (50°). Arrhenius plots (—log K vs. 1/T) gave a pair of straight lines intersecting one another at the saturation temperature, showing a structural transition in the homogeneous system. Activation energies of conduction have been computed for the two processes, and the difference in activation energies is attributed to the activation energy of transition.  相似文献   

11.
The fluidity of human erythrocyte membrane, and the effect of chlorpromazine at prelytic and lytic concentrations on the fluidity have been studied by using three kinds of fatty acid spin labels and measuring the temperature dependence of Mg2+-ATPase activity. The Arrhenius plot of the apparent rotational correlation time, tau c, for probes I(12,3) and I(5,10) showed an abrupt discontinuity at about 30 degrees C, and the plot for I(1,14) at 25 degrees C, indicating that a large difference in the fluidity exists between the interior and the outer surface of the lipid bilayer. The portions of the fatty acid chain near the ten carbon bond lengths removed from the bilayer surface became more fluid by chlorpromazine treatment; there was a decrease in the break point to around 26 degrees C following treatment with 0.6 or 1 mM of the drug. Two breaks at 21 and 30 degrees C in the Arrhenius plot of the Mg2+-ATPase activity were observed in normal erythrocyte membrane. The activation energy of the Mg2+-ATPase reaction has the values of 3.0 and 22.1 kcal/mol above the upper break and below the lower break, respectively. The drug exposure induced only a slight shift in the break temperatures, while the treatment significantly enhanced the associated activation energies of the reaction. These results suggest that the boundary phospholipids of the Mg2+-ATPase in the membrane are probably more rigid than the bulk lipids.  相似文献   

12.
Dynamics of hemoglobin, ceruloplasmin concentration, the changes of chemiluminescence in blood plasma and kinetics of rat erythrocyte heat denaturation during consequent exposition of high altitude hypoxia and hyperbaric oxygenation have been studied. Severe hypoxia causes the decrease of extraerythrocyte hemoglobin and oxidase activity of ceruloplasmin. Reoxygenation results in significant increase of blood plasma chemiluminescence with simultaneous increase of extraerythrocyte hemoglobin level and with modification of surface structure of the erythrocyte membranes. Possible pathways of activation of oxygen-dependent of free-radical processes during reoxygenation are discussed.  相似文献   

13.
14.
Microwave dielectric measurements of erythrocyte suspensions.   总被引:1,自引:1,他引:0       下载免费PDF全文
J Z Bao  C C Davis    M L Swicord 《Biophysical journal》1994,66(6):2173-2180
Complex dielectric constants of human erythrocyte suspensions over a frequency range from 45 MHz to 26.5 GHz and a temperature range from 5 to 40 degrees C have been determined with the open-ended coaxial probe technique using an automated vector network analyzer (HP 8510). The spectra show two separate major dispersions (beta and gamma) and a much smaller dispersion between them. The two major dispersions are analyzed with a dispersion equation containing two Cole-Cole functions by means of a complex nonlinear least squares technique. The parameters of the equation at different temperatures have been determined. The low frequency behavior of the spectra suggests that the dielectric constant of the cell membrane increases when the temperature is above 35 degrees C. The real part of the dielectric constant at approximately 3.4 GHz remains almost constant when the temperature changes. The dispersion shifts with temperature in the manner of a thermally activated process, and the thermal activation enthalpies for the beta- and gamma-dispersions are 9.87 +/- 0.42 kcal/mol and 4.80 +/- 0.06 kcal/mol, respectively.  相似文献   

15.
The nucleophilic substitution reaction between glutathione and 1-chloro-2,4-dinitrobenzene has been studied at temperatures between 4 and 42°C and pH values between 6.99 and 10.80. The apparent enthalpy, entropy and free energy of ionization of the thiol group have been estimated as have the apparent enthalpy, entropy and free energy of activation of the reaction between the glutathione thiolate anion and the aromatic electrophile. The results obtained permit the calculation of values of the second order rate constant governing the reaction at a range of temperatures and pHs. These values are in accord with those reported in the literature from experimental work by others. The major glutathione S-transferase from Galleria mellonella has been studied with respect to its kinetic responses to changes in pH and temperature. There appear to be two kinetically critical ionizations governing the reaction at high pH. These ionization events are characterized by apparent pKa values of 8.61 ± 0.15 and 9.16 ± 0.22. A thermodynamic model of the kinetic behavior of the enzyme permits the prediction of its activity over a range of pH and temperature values. The apparent free energy of activation for the enzyme catalyzed reaction is only 7% lower than that for the non-catalyzed reaction between 1-chloro-2,4-dinitrobenzene and glutathione thiolate anion. This observation is compatible with the suggestion that promotion of the ionization of the glutathione thiol group is the major mechanism of catalysis.  相似文献   

16.
土壤-植物-大气连续体水热动态模拟的研究   总被引:7,自引:0,他引:7  
唐绍忠 《生态学报》1991,11(3):256-261
本文从能量平衡原理和质量守恒定律出发,描述了土壤-植物-大气连续体中的热量转换和水分输送,模拟了系统中水分和热量的动态变化过程,并用所建立的模拟模型计算了冬小麦群落的冠层温度、叶水势及系统的潜热与显热变化关系,结果表明该模型有一定的可靠性。  相似文献   

17.
Mechanical properties of erythrocyte membranes play an important role in red cell functions. Stability of human erythrocytes under deforming mechanical tensions which occur in the rapidly moving fluid is studied. The activation energy of the mechanical hemolysis determined by the temperature dependence of the hemolysis rate is 55 + 7 kJ/mol. The fragility of erythrocytes rises sharply as the salt concentrations increase. Glutaric dialdehyde forms a certain number of interprotein bonds which increase the fragility of erythrocytes. The mechanical stability of the erythrocyte membrane falls at high (0.5 M) ethanol concentrations. Blood plasma proteins, particularly human serum albumin, have a pronounced stabilizing effect. The hemolysis occurring during the rapid mixing is not probably associated with an osmotic mechanism since high sucrose concentrations do not prevent this process. The mechanical hemolysis depends both on the deforming tension arising in the membrane and on the state of the erythrocyte membrane.  相似文献   

18.
Although the dehydration of α-D-glucose monohydrate is an important aspect of several industrial processes, there is uncertainty with regard to the applicable rate law and other factors that affect dehydration. Therefore, the dehydration of three glucose monohydrate samples has been studied using isothermal gravimetric analysis. Dehydration follows a one-dimensional contraction (R1) rate law for the majority of kinetic runs, and an activation energy of 65.0±3.9 kJ mol(-1) results when the rate constants are fitted to the Arrhenius equation. Fitting the rate constants to the Eyring equation results in values of 62.1±3.7 kJ mol(-1) and -77.8±4.7 J mol(-1)K(-1) for ΔH(?) and ΔS(?), respectively. The impedance effect on the loss of water vapor has also been investigated to determine the values for activation energy, enthalpy, and entropy for diffusion of water. The results obtained for the activation parameters are interpreted in terms of the absolute entropies of anhydrous glucose and the monohydrate.  相似文献   

19.
Thermal stability of erythrocyte membrane is a measure for its ability to maintain permeability barrier at deleterious conditions. Hence, it could impact the resistance of erythrocytes against detrimental factors in circulation. In this study the thermostability of erythrocyte membranes was expressed by the temperature, T(go), at which the transmembrane gradient of ion concentration rapidly dissipated during transient heating. T(go) is the inducing temperature of the membrane transition that activated passive ion permeability at hyperthermia causing thermal hemolysis. A good allometric correlation of T(go) to the resistance against thermal hemolysis and the life span of erythrocytes were found for 13 mammals; sheep, cow, goat, dog, horse, man, rabbit, pig, cat, hamster, guinea pig, rat, and mouse. For the same group, the values of T(go) were strictly related to the sphingomyelin content of erythrocyte membranes. The residual ion permeability, P, was temperature activated from 38 to 57 degrees C with activation energy of 250+/-15 kJ/mol that strongly differed from that below 37 degrees C. The projected value of P at 37 degrees C was about half that of residual physiological permeability for Na+ and K+ that build ground for possible explanation of the life span vs membrane thermostability allometric correlation.  相似文献   

20.
Chen C  Wang W  Wang Z  Wei F  Zhao XS 《Nucleic acids research》2007,35(9):2875-2884
Hybridization of nucleic acids with secondary structure is involved in many biological processes and technological applications. To gain more insight into its mechanism, we have investigated the kinetics of DNA hybridization/denaturation via fluorescence resonance energy transfer (FRET) on perfectly matched and single-base-mismatched DNA strands. DNA hybridization shows non-Arrhenius behavior. At high temperature, the apparent activation energies of DNA hybridization are negative and independent of secondary structure. In contrast, when temperature decreases, the apparent activation energies of DNA hybridization change to positive and become structure dependent. The large unfavorable enthalpy of secondary structure melting is compensated for by concomitant duplex formation. Based on our results, we propose a reaction mechanism about how the melting of secondary structure influences the hybridization process. A significant point in the mechanism is that the rate-limiting step switches along with temperature variation in the hybridization process of structured DNA, because the free energy profile of hybridization in structured DNA varies with the variation in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号