首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerobic chemoheterotrophic bacteria were isolated from surface soils and coastal plain subsurface (including deep aquifer) sediments (depths to 265 m) at a study site near Aiken, S.C., by plating on concentrated and dilute media. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. These isolates were quite diverse; 626 physiologically distinct types (i.e., types with a unique pattern of responses to the 21 tests) were detected among the 1,112 isolates obtained. Physiologically distinct types were isolated on concentrated and dilute media (only 11% overlap between the groups); isolates from surface soils and subsurface sediments were also quite different (only 3% overlap). The surface soil isolates more readily utilized all but 1 of 12 carbon sources offered, and a significantly larger proportion of them hydrolyzed esculin and gelatin. Only 4% of the subsurface isolates fermented glucose, even though 82% of them could use it aerobically. l-Malate and d-gluconate were utilized by at least 75% of the subsurface isolates, and seven other carbon sources were used by at least 40% of them. Subsurface isolates from different geological formations (depths) and, to a lesser extent, from the same geological formation at different boreholes differed distinctly in their group responses to certain physiological tests. Moreover, sediments from different depths and boreholes contained physiologically distinct types of bacteria. Thus, considerable bacterial diversity was observed in coastal plain subsurface sediments, even within defined geological formations.  相似文献   

2.
The distribution of microorganisms in deep subsurface profiles was determined at three sites at the Savannah River Plant, Aiken, South Carolina. Acridine orange direct counts (AODC) of bacteria were highest in surface soil samples and declined to the 106 to 107 per gram range in the subsurface, but then did not decline further with depth. In the subsurface, AODC values varied from layer to layer, the highest being found in samples from sandy aquifer formations and the lowest in clayey interbed layers. Sandy aquifer sediments also contained the highest numbers of viable bacteria as determined by aerobic spread plate counts (CFU) on a dilute heterotrophic medium. In some of these samples bacterial CFU values approached 100% of the AODC values. Viable protozoa (amoebae and flagellates, but no ciliates) were found in samples with high bacterial CFU values. A variety of green algae, phytoflagellates, diatoms, and a few cyanobacteria were found at low population densities in samples from two of the three boreholes. Low numbers of fungi were evenly distributed throughout the profiles at all three sites. Microbial population density estimates correlated positively with sand content and pore‐water pH, and negatively with clay content and pore‐water metal concentration. A large diversity of prokaryotic and eukaryotic microorganisms was found in samples with high population densities. A survey of bacterial strains isolated from subsurface samples revealed associations of gram‐positive bacteria with high clay sediments and gram‐negative bacteria with sandy sediments. The ability to deposit lipophilic storage material (presumably poly‐ß‐hydroxybutyrate) was found in a high proportion of isolates from sandy sediments, but only rarely in isolates from high clay sediments.  相似文献   

3.
Plasmid Incidence in Bacteria from Deep Subsurface Sediments   总被引:12,自引:7,他引:5       下载免费PDF全文
Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu2+, Cr3+, and Hg2+ for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of β-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacteria to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those for drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.  相似文献   

4.
Rates of Microbial Metabolism in Deep Coastal Plain Aquifers   总被引:15,自引:9,他引:6       下载免费PDF全文
Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C] acetate were 9.4 × 10−3 to 2.4 × 10−1 for the Black Creek aquifer, 1.1 × 10−2 for the Middendorf aquifer, and <7 × 10−5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10−4 to 10−6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10−4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.  相似文献   

5.
Thirty-two chemoheterotrophic bacteria were isolated from unsaturated subsurface soil samples obtained from ca. 70 m below land surface in a high desert in southeastern Idaho. Most isolates were gram positive (84%) and strict aerobes (79%). Acridine orange direct counts of microbes in one subsurface sample showed lower numbers than similar counts performed on surface soils from the same location (ca. 5 × 105 versus 2 × 106 cells per g [dry weight] of soil), but higher numbers than those from plate counts performed on the subsurface material. Another sample taken from the same depth at another location showed no evidence of colonies under identical conditions. Soil analyses indicated that subsurface sediments versus surface soils were slightly alkaline (pH 7.9 versus 7.4), had a higher water content (25.7 versus 6.3%), and had lower organic carbon concentrations (0.05 to 0.17 versus 0.25% of soil dry weight). Analyses of biologically relevant gases from the unsaturated subsurface indicated an aerobic environment. As in other unsaturated soil environments, either a high proportion of bacteria in these subsurface sediments are not viable or they are incapable of growth on conventional media under aerobic conditions. The presence and numbers of bacteria in these deep sediments may be influenced by colonization opportunities afforded by periodic percolation of surface water through fractures in overlying strata.  相似文献   

6.
Three methods were used to provide information on the identity and phylogenetic relatedness of 19 aerobic, chemoheterotrophic bacteria isolated from topsoil and deep subsurface sediments at a site in South Carolina. These methods were (i) analysis of selected physiological traits, (ii) restriction endonuclease analysis (REA) of genomic DNA, and (iii) analysis of 16S ribosomal RNA sequences. When the 16S rRNA sequences were compared with those for 12 standard strains, two topsoil isolates and six subsurface strains formed a tight group with the high-G+C Gram-positive bacteria and appeared to be most closely related to Arthrobacter globiformis— a coryneform-actinomycete bacterium with unusually effective survival capabilities. The rest of the subsurface isolates were scattered among the standard strains from the Proteobacteria— including the pseudomonads and Agrobacterium tumefaciens— or the low-G+C Gram-positive bacteria.  相似文献   

7.
Abstract Microbiological, geochemical, and isotopic analyses of sediment and water samples from the unconsolidated Yegua formation in east-central Texas were used to assess microbial processes in the terrestrial subsurface. Previous geochemical studies suggested that sulfide oxidation at shallow depths may provide sulfate for sulfate-reducing bacteria (SRB) in deeper aquifer formations. The present study further examines this possibility, and provides a more detailed evaluation of the relationship between microbial activity, lithology, and the geochemical environment on meter-to-millimeter scales. Sediment of varied lithology (sands, silts, clays, lignite) was collected from two boreholes, to depths of 30 m. Our findings suggest that pyrite oxidation strongly influences the geochemical environment in shallow sediments (∼5 m), and produces acidic waters (pH 3.8) that are rich in sulfate (28 mM) and ferrous iron (0.3 mM). Sulfur and iron-oxidizing bacteria are readily detected in shallow sediments; they likely play an indirect role in pyrite oxidation. In consistent fashion, there is a relative paucity of pyrite in shallow sediments and a low 34S/32S-sulfate ratio (0.2‰) (reflecting contributions from 34S-depleted sulfides) in shallow regions. Pyrite oxidation likely provides a sulfate source for both oxic and anoxic aquifers in the region. A variety of assays and direct-imaging techniques of 35S-sulfide production in sediment cores indicates that sulfate reduction occurs in both the oxidizing and reducing portions of the sediment profile, with a high degree of spatial variability. Narrow zones of activity were detected in sands that were juxtaposed to clay or lignite-rich sediments. The fermentation of organic matter in the lignite-rich laminae provides small molecular weight organic acids to support sulfate reduction in neighboring sands. Consequently, sulfur cycling in shallow sediments, and sulfate transport represent important mechanisms for commensal interaction among subsurface microorganisms by providing electron donors for chemoautotrophic bacteria and electron acceptors for SRB. The activity of SRB is linked to the availability of suitable electron donors from spatially distinct zones. Received: 10 November 1997; Accepted: 10 February 1998  相似文献   

8.
The aerobic, chemoheterotrophic bacteria indigenous to deep aquifers and other subsurface sediments (depths to 265 m) at a site in South Carolina were characterized by direct microscopy, enumeration of viable cells, analysis of colony morphologies on plates, and analysis of cell morphologies of isolated strains. Substantial numbers of viable bacteria (105‐108/g) were present in all transmissive, aquifer sediments, and their numbers did not decrease with depth. Fewer bacteria (<103/g) were detected in nontransmissive, confining layers. The highest viable counts were obtained on dilute media, but 10–50% of the bacteria in most aquifer sediments also grew rapidly on concentrated, nutrient‐rich media (indicating a high degree of metabolic flexibility). Most of the bacteria were mesophilic; relatively few psychrophiles or thermophiles were detected (<103/g; in many cases, none). The bacterial flora was diverse (11–62 distinct colony types on enumeration plates of most aquifer sediments). Diversity did not decrease with depth, but the composition of the microflora (based on colony analysis) varied extensively from one geological formation to another. Almost 95% of the platable colonies that grew on enumeration plates contained nonstreptomycete bacteria, more than 80% of which were gram‐negative rods. Light microscopy of films released from aquifer sediments by flotation revealed the presence of dividing cells and microcolonies, thus implying that the in situ deep aquifer microflora was more metabolically active than that seen previously in shallow aquifers.  相似文献   

9.
A bacterium, designated F199, utilized toluene, naphthalene, dibenzothiophene, salicylate, benzoate, p-cresol, and all isomers of xylene as a sole carbon and energy source. This bacterium was isolated from Middendorf sediments, a Cretaceous age formation that underlies the Southeast Coastal Plain in South Carolina, at a depth of approximately 410 m. F199 is a gram-positive, irregular-shaped bacterium that has a varied cell morphology that is dependent on culture medium type and growth stage. F199 required microaerobic conditions (40 to 80 μM O2) for growth on hydrocarbons, glucose, acetate, and lactate in mineral salts medium but not for growth on rich media. [14C]naphthalene mineralization by F199 was induced by either naphthalene or toulene; however, [14C]toluene mineralization by this strain was induced by toluene but not naphthalene. F199 was also found to harbor two plasmids larger than 100 kb. Restricted F199 plasmid and genomic DNA did not hybridize with toluene (pWW0) or naphthalene (NAH7) catabolic plasmid DNA probes. The presence in the Middendorf formation of bacteria with the capacity for degrading a variety of aromatic compounds suggests that indigenous microorganisms may have potential for in situ degradation of organic contaminants.  相似文献   

10.
Burkholderia pseudomallei is a free-living organism that causes the potentially lethal tropical infection melioidosis. The disease is endemic in many parts of eastern Asia and northern Australia. The presence of two distinct biotypes in soil can be reliably distinguished by their ability to assimilate l -arabinose. Whereas some soil isolates could utilize this substrate (Ara+), the remaining soil isolates and all clinical isolates tested so far could not (Ara?). Only the Ara? isolates were virulent in animal models. We have raised a murine monoclonal antibody (MAb) that can readily distinguish Ara? from Ara+ biotypes. The MAb reacted with a high molecular weight component present only on the Ara? biotype. With this MAb, clinical and soil Ara?isolates gave identical positive reactions in agglutination, immunofluorescence, ELISA and immunoblot assays. Using these same assay systems, the soil Ara+ biotype did not react with the MAb. Similar but distinct immunoblot patterns were also noted when these two Ara biotypes were probed with sera from patients with melioidosis or with polyclonal immune rabbit sera. These data showed that the Ara? biotype from both clinical and environmental isolates is antigenically different from its Ara+ environmental counterpart. The SDS-PAGE protein and lectin-binding profiles of both groups of Ara? isolates were also found to be different from those of the Ara+ biotype.  相似文献   

11.
Subsurface sediments obtained from three cores drilled to depths of 260 m below the surface in South Carolina were analyzed for heterotrophic bacteria; N2‐fixing microaerophiles; and nitrifying, sulfur‐oxidizing, and H2‐oxidizing lithotrophic bacteria. In addition, pore waters were extracted for chemical analysis of inorganic nitrogen species, sulfate, dissolved organic carbon, pH, and Eh. Autotroph populations were generally less than 103 most probable number (MPN) g‐1 dry sediment with sulfur‐oxidizing bacteria, detected in 60% of the sediment samples, being the most frequently encountered group. Nitrifying bacteria were detected mainly in sediments from one borehole (P28), and their populations in those sediments were correlated with pore‐water ammonium concentrations. Populations of heterotrophic bacteria in 60% of the sediments were greater than 106 colony forming units (CFU) g‐1 dry sediment and were typically lower in sediments of high clay content and low pH. Microaerophilic N2‐fixing bacteria were cultured from >50% and bacteria capable of growth on H2 were cultured from 35% of the subsurface sediments examined. Sediment texture, which controls porosity, water potential, and hydraulic conductivity, appears to be a major factor influencing microbial populations in coastal plain subsurface sediments.  相似文献   

12.
A shading experiment was conducted over a growing season to measure the effects of light reduction on Vallisneria americana in Perdido Bay on the Florida-Alabama border and to determine the response of heterotrophic bacteria in the rhizosphere. Plants subjected to 92% light reduction showed the most pronounced effects in chlorophyll a concentration, above- and below-ground biomass, and leaf dimensions. These results further suggested that the V. americana life cycle, as exhibited in temperate waters, was impaired. Heterotrophic bacteria were enumerated and identified (i) from the roots and sediments of fully illuminated plants and from unvegetated sediments at three intervals and (ii) from the roots of plants that have been subjected to 92% light reduction for 3 months. Up to two orders of magnitude greater numbers of bacteria were enumerated from root samples than sediment samples on a dry weight basis. Bacteria enumerated from the roots of plants subjected to light reduction (1.3±1.1×108 CFU g−1) were significantly higher than numbers of bacteria enumerated from the roots of fully illuminated plants (4.8±1.8×107 g−1 in the summer) or sediment samples (1.4±0.03×106 g−1). This suggests the roots of seagrasses stressed by light reduction provided more nutrients for bacterial growth. Higher percentages of Gram-negative bacteria were isolated from roots (up to 85% in the fall) than sediments (0-15%). Examination of isolates for traits characteristic of rhizosphere bacteria (siderophore production, formation of the phytohormone indole-3-acetic acid, and antifungal activity) did not show a clear distinction between root-associated and sediment isolates. Taxonomic identifications of root-associated bacteria based on MIDI analysis of fatty acid methyl esters were consistent with bacteria known to be associated with other plants or found at oxic-anoxic interfaces. In addition, the bacterial identifications showed most species were associated with only roots or only sediments. These results support studies suggesting seagrass rhizospheres harbor distinct bacterial communities.  相似文献   

13.
Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ~104 CFU g−1, but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 μCi of 137Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 μCi of 137Cs g−1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste.  相似文献   

14.
A largely terrestrial, lignite/coal-bearing, 148 m core from the Waikato Basin, New Zealand, was studied, with a multidisciplinary approach, for subsurface microbiology. The top ≈76 m was Latest Miocene-Late Pleistocene (≈0.4–5.5 Ma) sediments, which overlay an unconformity and a previously deeply buried (1,600–2,300 m, × 55–75°C) ≈69 m section of moderately indurated, Late Eocene-Early Oligocene (≈32–35 Ma) deposits. Below this is weathered, Late Jurassic metasedimentary basement rock (145.5–157.0 Ma). Similar cell numbers (mean 1.2 × 106 cm ?3 ), high viability (4–32%), intact phospholipids (biomarkers for living Bacteria) and activity (sulphate reduction, DNA replication) occurred heterogeneously throughout the core, including the weathered basement rock. Substantial numbers of viable anaerobic heterotrophic and lignite-utilizing bacteria (means 3.4 × 10 4 , 3.0 × 10 3 cm ?3 ) were present throughout the core. This is similar to some deep terrestrial formations but contrasts with the generally exponentially decreasing prokaryotic populations in sub-seafloor sediments. For Bacteria, ≈76% of the 16S rRNA gene phylotypes were similar above (31.98 m) and below (133.55 m) the 76 m unconformity, which together with similar cell numbers indicates limited deep burial impact/palaeosterilization, or effective re-colonisation. Archaeal populations were not dominant being only detected with general primers at 31.98 m and those detected with methanogen functional primers were different above and below the ≈76 m unconformity. Both dominant bacterial (Proteobacteria, Actinobacteria, Firmicutes, Chloroflexi) and archaeal (Miscellaneous Crenarchaeotic Group, Methanosarcinales and Methanobacteriales) sequences were similar to those previously detected in both marine and terrestrial subsurface environments, reflecting the changing depositional conditions of the formation. However, the presence of ANME sequences had not been previously found in the terrestrial subsurface. A large proportion of the bacterial 16S rDNA diversity was cultured (43% of commonest genera). Prokaryotic populations and activity changed with lithology and depth and substrates (formate, acetate, oxalate) may diffuse from high-carbon, lignite/coaly layers to support bacterial populations in adjacent sandy or clay-silt layers.  相似文献   

15.
Recently attempts have been made to establish the presence and to determine the metabolic versatility of microorganisms in the terrestrial deep subsurface at the Savannah River Plant, Aiken, SC, USA. Sediment samples obtained at 20 different depths of up to 526 m were examined to determine carbon mineralization under aerobic, sulfate-reducing, and methanogenic conditions. The evolution of14CO2 from radiolabelled glucose was observed under aerobic conditions in all sediments, whereas pyridine was transformed in 50% of the 20 sediments and indole was metabolized in 85% of the sediments. Glucose mineralization in certain sediments was comparable to that in the surface environment. Sulfate was reduced in only five sediments, and two were carbon limited. Methane production was detected in ten sediments amended with formate only after long-term incubations. The transformation of indole and pyridine was only rarely observed under sulfate-reducing conditions and was never detected in methanogenic incubations. This study provides information concerning the metabolic capability of both aerobic and anaerobic microorganisms in the deep subsurface and may prove useful in determining the feasibility of microbial decontamination of such environments.  相似文献   

16.
Bacterial strains were randomly isolated from soil using three different media with glucose (TG), Tryptone Soya Broth (TTS), and succinate (TS) as carbon sources. Plate counts obtained were 12.0×107, 4.5 ×107, and 1.5×107 g–1 soil dry weight, respectively. The strains were characterized phenotypically by the API 20B test system. A cluster analysis of all isolates revealed 40 biotypes at 80% similarity, 23 in TG, 29 in TTS, and 27 in TS. Each of the 10 most common biotypes contained 10 to 2.5% of the isolates, and 17 biotypes contained one or two isolates. The common biotypes were unevenly distributed among the isolates from the different media. About 20% of the isolates from TG and TTS were unique for the particular medium, whereas among the isolates from TS, about 60% were unique. Thirty percent of the isolates belonged to biotypes that were common to all three populations. All media gave approximately the same high diversity measured as Shannon index and Equitability, indicating no direct correlation between plate count and diversity.  相似文献   

17.
Hong YG  Li M  Cao H  Gu JD 《Microbial ecology》2011,62(1):36-47
Anaerobic ammonium oxidation (anammox) has been recognized as an important process for the global nitrogen cycle. In this study, the occurrence and diversity of anammox bacteria in the deep-sea subsurface sediments of the South China Sea (SCS) were investigated. Results indicated that the anammox bacterial sequences recovered from this habitat by amplifying both 16S rRNA gene and hydrazine oxidoreductase encoding hzo gene were all closely related to the Candidatus Scalindua genus. A total of 96 16S rRNA gene sequences from 346 clones were grouped into five subclusters: two subclusters affiliated with the brodae and arabica species, while three new subclusters named zhenghei-I, -II, and -III showed ≤97.4% nucleic acid sequence identity with other known Candidatus Scalindua species. Meanwhile, 88 hzo gene sequences from the sediments also formed five distant subclusters within hzo cluster 1c. Through fluorescent real-time PCR analysis, the abundance of anammox bacteria in deep-sea subsurface sediment was quantified by hzo genes, which ranged from 1.19 × 104 to 7.17 × 104 copies per gram of dry sediments. Combining all the information from this study, diverse Candidatus Scalindua anammox bacteria were found in the deep-sea subsurface sediments of the SCS, and they could be involved in the nitrogen loss from the fixed inventory in the habitat.  相似文献   

18.
Genetically divergent lineages often coexist within populations of the annual legume Amphicarpaea bracteata. At one site dominated by two such lineages (termed biotypes “C” and “S”), isolates of root-nodule bacteria (Bradyrhizobium sp.) were sampled from both hosts and analyzed by enzyme electrophoresis. Symbiont populations on the two plant biotypes were highly distinct. Out of 15 bacterial multilocus genotypes detected (among 51 isolates analyzed), only one was shared in common by the two plant biotypes. Cluster analysis revealed three bacterial lineages (designated I, II, and III), with lineage I found exclusively on biotype C plants, and the two other lineages almost completely restricted to biotype S hosts. Laboratory inoculation tests indicated that lineage I bacteria were strictly specialized on biotype C hosts, forming few or no nodules on plants of the other host biotype. Bacterial lineages II and III were capable of forming nodules on both kinds of plants, but nodule numbers were often significantly higher on biotype S hosts. The nonrandom association between plant and bacterial lineages at this site implies that genetic diversity of hosts is an important factor in the maintenance of polymorphism within the symbiont population.  相似文献   

19.
Cryptoendolithic microorganisms from stratified communities in Antarctic sandstone were studied for physiological diversity and possible interactions. Cultures of 25 bacteria, five fungi, and two green algae from one boulder grew with a wide variety of organic carbon or nitrogen sources, they exhibited varied exoenzymatic activities and were psychrophilic or psychrotrophic. Many isolates excreted vitamins into the medium and were stimulated by other vitamins. Organic acid excretion and siderophore formation were common, but antibiotic activity was rare. Plasmids were found in 24% of the bacteria, and many of these strains showed resistance to antibiotics and heavy metals. A small plasmid (2.9 kb) from strain AA-341 was electrotransferred into sensitive isolates, thereby rendering these resistant to amplicillin and Cr3+ Bacterial cultures in spent algal medium and coculture with algae demonstrated beneficial (rarely inhibitory) interactions. A search for free organic compounds in zones of the sandstone community revealed sugars, sugar alcohols, organic acids and amino acids-in many cases the same compounds that were excreted into the laboratory medium. Data presented here indicate low taxonomic but high physiological diversity among these heterotrophic cryptoendoliths. This physiological diversity, as well as the spatial separation in layers with distinct activities, allows coexistence within the community and contributes to the stability of this ecosystem.  相似文献   

20.
Diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in samples of the northern South China Sea subsurface sediment were assessed by analyzing the amoA gene sequences retrieved from the samples. The microbial diversity was assessed using rarefaction and phylogenetic analyses. The deep-sea subsurface sediments harbored diverse and distinct AOA and AOB communities, but the abundance of AOA was lower than that of AOB, consistent with many other studies about bacteria and archaea in subsurface sediments. Diversity of AOA shown in the OTUs and Shannon index was correlated with the concentration of nitrite in the Pearson analysis, but no obvious relationships between the diversity or abundance of AOB and the physicochemical parameters could be identified in the present study, indicating the concentration of ammonium may not be an important factor to determine the diversity and abundance of ammonia-oxidizing prokaryotes in the subsurface sediments. Additionally, Nitrosomonas-like AOB was found to be dominant in subsurface sediments of the northern South China Sea showing a different adaption strategy comparing with some Nitrosospira-like AOB lineages. Concentration of nitrite was correlated with diversity of AOA, but no correlations between diversity and abundance of AOB and the physicochemical parameters were established in the study. Supplementary materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental files.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号