首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The vertebrate caudal proteins, being upstream regulators of the Hox genes, play a role in establishment of the body plan. We describe analysis of two orthologous caudal genes (chick cdx-A and mouse cdx-1) by use of lacZ reporters expressed in transgenic mouse embryos. The expression patterns show many similarities to the expression of endogenous mouse cdx-1. At 8.7 days, cdx/lacZ activity within neurectoderm and mesoderm forms posterior-to-anterior gradients, and we discuss the possibility that similar gradients of cdx gene expression may function as morphogen gradients for the establishment of Hox gene expression boundaries. Our observations suggest that gradients form by decay of cdx/lacZ activity in cells that have moved anterior to the vicinity of the node. The cdx-A/lacZ expression pattern requires an intron enhancer that includes two functional control elements: a DR2-type retinoic acid response element and a Tcf/beta-catenin binding motif. These motifs are structurally conserved in mouse cdx-1.  相似文献   

3.
Primordial germ cells in the mouse embryo during gastrulation   总被引:45,自引:0,他引:45  
With the aid of a whole-mount technique, we have detected a small cluster of alkaline phosphatase (ALP)-positive cells in whole mounts of mid-primitive-streak-stage embryos, 7-7 1/4 days post coitum (dpc). Within the cluster, about 8 cells contain a small cytoplasmic spot, intensely stained for ALP activity and possibly associated with an active Golgi complex. The cluster lies just posterior to the definitive primitive streak in the extraembryonic mesoderm, separated from the embryo by the amniotic fold. Towards the end of gastrulation, the number of cells containing the ALP-positive spot rises to between 50 and 80. Thereafter the number of cells in the extraembryonic cluster declines, and similar cells start to be seen in the mesoderm of the primitive streak and then in the endoderm. At 8 dpc, about 125 ALP-stained cells are found, mainly in the hindgut endoderm and also at the base of the allantois, their appearance and location at this stage agreeing closely with previous reports on primordial germ cells (PGCs). Embryos from which the cluster area has been removed at the 7-day stage are devoid of PGCs after culture for 48 h, whereas the excised tissue is rich in PGCs. We argue that the cells in the cluster are indeed primordial germ cells, at a stage significantly earlier than any reported previously. This would indicate that the PGC lineage in the mouse is set aside at least as early as 7 dpc, possibly as one of the first 'mesodermal' cell types to emerge, and that its differentiation, as expressed by ALP activity, is gradual.  相似文献   

4.
The proto-oncogene int-2 has been implicated in the formation of mouse mammary-tumour-virus-induced mammary tumours. Analysis of the predicted coding sequence indicates that int-2 is a member of the fibroblast growth factor family. Previous studies using Northern blot analysis suggested that normal expression of int-2 may be confined to extra-embryonic endoderm lineages of embryonic stages of mouse development. We have used in situ hybridization and Northern blot analysis to examine directly int-2 expression in embryo stem cells and in the developing embryo from early gastrulation to midsomite stages. Complex patterns of accumulation of int-2 RNA were observed in embryonic and extra-embryonic tissues. The data suggest multiple roles for int-2 in development which may include migration of early mesoderm cells and induction of the otocyst.  相似文献   

5.
The expression pattern of the receptor tyrosine kinase gene EphB3 was examined during the early stages of chick embryogenesis, and is described in this report. In the gastrula, EphB3 is expressed in epiblast cells adjacent to and entering the anterior portion of the primitive streak; expression is extinguished once cells have ingressed. At headfold stages, EphB3 is strongly transcribed in the floor of the foregut and in anterior lateral endoderm, and is expressed in the subjacent cardiogenic mesoderm. EphB3 is transiently expressed in the lateral ectoderm, neural tube, and neural crest during these stages. Later neural expression is localized to the mesencephalon. In the somitic mesoderm, EphB3 is initially expressed in the sclerotome, but later is expressed predominantly in the dermatome. Prominent expression is also detected in the developing heart, liver, posterior ventral limb bud mesenchyme, pharyngeal arches, and head mesenchyme.  相似文献   

6.
Fgf-4, initially isolated as a transforming gene from human tumors, is a member of the Fibroblast Growth Factor (FGF) family. It has previously been shown by northern blot hybridization analysis to be expressed in teratocarcinoma and embryonic stem cells, suggesting that it plays a role in embryonic development. We have carried out an RNA in situ hybridization analysis of Fgf-4 expression in the developing mouse embryo, from fertilization through the 14th day of gestation (E14.5). Our results show that Fgf-4 RNA is first detected at the late blastocyst stage in cells that give rise to all of the embryonic lineages (inner cell mass cells). During the early stages of gastrulation, expression becomes restricted to the primitive streak where mesoderm and definitive endoderm are formed. Expression continues in the distal (rostral) two-thirds of the streak through approx. E10, and then is detected in the tail bud, which replaces the streak as the primary source of mesoderm. Additional sites of expression are found after the three primary germ layers are established and organogenesis begins. Fgf-4 RNA is detected transiently in the branchial arch units, the somitic myotome, the apical ectodermal ridge of the developing limb bud and the tooth bud, suggesting that the gene has multiple roles during embryogenesis. These results are compared with the expression patterns of other FGF genes. Taken together, the data suggest that individual members of the gene family are expressed sequentially in developmental pathways such as mesoderm formation and myogenesis, and play a role in specific epithelial-mesenchymal interactions.  相似文献   

7.
Differential gene regulation integrated in time and space drives developmental programs during embryogenesis. To understand how the program of gastrulation is regulated by Wnt/beta-catenin signaling, we have used genome-wide expression profiling of conditional beta-catenin mutant embryos. Known Wnt/beta-catenin target genes, known components of other signaling pathways, as well as a number of uncharacterized genes were downregulated in these mutants. To further narrow down the set of differentially expressed genes, we used whole-mount in situ screening to associate gene expression with putative domains of Wnt activity. Several potential novel target genes were identified by this means and two, Grsf1 and Fragilis2, were functionally analyzed by RNA interference (RNAi) in completely embryonic stem (ES) cell-derived embryos. We show that the gene encoding the RNA-binding factor Grsf1 is important for axial elongation, mid/hindbrain development and axial mesoderm specification, and that Fragilis2, encoding a transmembrane protein, regulates epithelialization of the somites and paraxial mesoderm formation. Intriguingly, the knock-down phenotypes recapitulate several aspects of Wnt pathway mutants, suggesting that these genes are components of the downstream Wnt response. This functional genomic approach allows the rapid identification of functionally important components of embryonic development from large datasets of putative targets.  相似文献   

8.
9.
During mouse gastrulation, cells in the primitive streak undergo epithelial–mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8–Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.  相似文献   

10.
García-García MJ  Anderson KV 《Cell》2003,114(6):727-737
In vitro studies have suggested that proteoglycans facilitate signaling by mammalian growth factors, but genetic evidence supporting this role has been lacking. Here, we characterize the ENU-induced mutation lazy mesoderm (lzme), which disrupts the single mouse gene encoding UDP-glucose dehydrogenase (Ugdh), an enzyme required for the synthesis of the glycosaminoglycan (GAG) side chains of proteoglycans. lzme mutants arrest during gastrulation with defects in migration of mesoderm and endoderm, a phenotype similar to that of mutants in the fibroblast growth factor (Fgf) pathway. Analysis of the expression of molecular markers indicates that Fgf signaling is blocked in lzme mutant embryos. In contrast, signaling by the growth factors Nodal and Wnt3, which are also essential during mouse gastrulation, appears to be normal in lzme embryos. The results demonstrate that proteoglycans are required during mouse gastrulation specifically to promote Fgf signaling.  相似文献   

11.
Early sequential expression of mouse Hox genes is essential for their later function. Analysis of the relationship between early Hox gene expression and the laying down of anterior to posterior structures during and after gastrulation is therefore crucial for understanding the ontogenesis of Hox-mediated axial patterning. Using explants from gastrulation stage embryos, we show that the ability to express 3' and 5' Hox genes develops sequentially in the primitive streak region, from posterior to anterior as the streak extends, about 12 hours earlier than overt Hox expression. The ability to express autonomously the earliest Hox gene, Hoxb1, is present in the posterior streak region at the onset of gastrulation, but not in the anterior region at this stage. However, the posterior region can induce Hoxb1 expression in these anterior region cells. We conclude that tissues are primed to express Hox genes early in gastrulation, concomitant with primitive streak formation and extension, and that Hox gene inducibility is transferred by cell to cell signalling. Axial structures that will later express Hox genes are generated in the node region in the period that Hox expression domains arrive there and continue to spread rostrally. However, lineage analysis showed that definitive Hox codes are not fixed at the node, but must be acquired later and anterior to the node in the neurectoderm, and independently in the mesoderm. We conclude that the rostral progression of Hox gene expression must be modulated by gene regulatory influences from early on in the posterior streak, until the time cells have acquired their stable positions along the axis well anterior to the node.  相似文献   

12.
Twisted gastrulation (Tsg) is a secreted protein that regulates Bmp signaling in the extracellular space through its direct interaction with Bmp/Dpp and Chordin (Chd)/Short gastrulation (Sog). The ternary complex of Tsg/Chd/Bmp is cleaved by the metalloprotease Tolloid (Tld)/Xolloid (Xld). Studies in Drosophila, Xenopus and zebrafish suggest that Tsg can act both as an anti-Bmp and as a pro-Bmp. We have analyzed Tsg loss-of-function in the mouse. Tsg homozygous mutants are viable but of smaller size and display mild vertebral abnormalities and osteoporosis. We provide evidence that Tsg interacts genetically with Bmp4. When only one copy of Bmp4 is present, a requirement of Tsg for embryonic development is revealed. Tsg-/-;Bmp4+/- compound mutants die at birth and display holoprosencephaly, first branchial arch and eye defects. The results show that Tsg functions to promote Bmp4 signaling during mouse head development.  相似文献   

13.
Connexin43 (Cx43) is a member of the family of channel-forming proteins that make up the gap junction and are believed to provide pathways for cell-cell exchange of developmental signals. We have used immunofluorescence and confocal microscopy to characterize the patterns of distribution of Cx43 in postimplantation mouse embryos representing stages of development extending through gastrulation and the major period of organogenesis [through 13.5 days post coitum (dpc)]. We find that Cx43 is expressed early after implantation by the undifferentiated, pluripotent cells of the primitive embryonic ectoderm from which all tissues of the fetus are believed to be derived. As cells become committed to particular developmental pathways, there is a progressive restriction of Cx43 to specific areas and organ systems. The patterns are complex and not limited by germ layer of origin, although there is a clear preference for expression in ectodermal and, to a lesser extent, mesodermal derivatives. Expression in lens, retina, kidney, brain, pineal and pituitary glands is initiated early in organogenesis. In heart, the first clear signal for Cx43 appears in the ventricle at about 10 dpc and is only subsequently detected in the atrium at about 13-13.5 dpc. Particularly intriguing with regard to functional implications is the high level expression observed at sites of inductive interaction; the eye lens and optic cup, the infundibulum and the apical ectodermal ridge of the limb bud.  相似文献   

14.
Abstract. Hyaluronan was localized in postimplantation mouse embryos using CD44, the principal hyaluronan receptor. The specificity of CD44 receptor-globulin labelling was confirmed using Streptomyces hyaluronidase, anti-chondroitin sulfate antibody, and other receptor globulins. Our major findings are summarized as follows:
1. Implantation of the blastocyst into the uterine wall triggers a rapid loss of hyaluronan from the extracellular matrix of decidual cells on the anti-mesometrial side of the uterus.
2. Hyaluronan appears early in development in the yolk cavity, and the basement membranes of primitive ectoderm and primitive endoderm.
3. During gastrulation, mesodermal cells enter a hyaluronan-rich environment, but lack a pericellular hyaluronan coat themselves.
4. In limb bud embryos, hyaluronan is present throughout the cranial mesenchyme, but is generally not present in the branchial bars, somites, or limb buds.
5. At mid-gestation, hyaluronan is present in the axial skeleton, craniofacial mesenchyme, endocardial cushions of the heart, smooth muscle of the gastrointestinal tract, and connective tissue throughout the body.
The pattern of hyaluronan expression in the day 13 fetus is nearly identical to the published distribution of transforming growth factor β (TGF β), suggesting a close functional relationship between these molecules. Together, the results suggest that hyaluronan is involved in the formation of early mesoderm, differentiation of craniofacial mesenchyme, and morphogenesis of the axial skeleton.  相似文献   

15.
Abstract. Hyaluronan was localized in postimplantation mouse embryos using CD44, the principal hyaluronan receptor. The specificity of CD44 receptor-globulin labelling was confirmed using Streptomyces hyaluronidase, anti-chondroitin sulfate antibody, and other receptor globulins. Our major findings are summarized as follows:
  • 1. 

    Implantation of the blastocyst into the uterine wall triggers a rapid loss of hyaluronan from the extracellular matrix of decidual cells on the anti-mesometrial side of the uterus.

  • 2. 

    Hyaluronan appears early in development in the yolk cavity, and the basement membranes of primitive ectoderm and primitive endoderm.

  • 3. 

    During gastrulation, mesodermal cells enter a hyaluronan-rich environment, but lack a pericellular hyaluronan coat themselves.

  • 4. 

    In limb bud embryos, hyaluronan is present throughout the cranial mesenchyme, but is generally not present in the branchial bars, somites, or limb buds.

  • 5. 

    At mid-gestation, hyaluronan is present in the axial skeleton, craniofacial mesenchyme, endocardial cushions of the heart, smooth muscle of the gastrointestinal tract, and connective tissue throughout the body.


The pattern of hyaluronan expression in the day 13 fetus is nearly identical to the published distribution of transforming growth factor β (TGF β ), suggesting a close functional relationship between these molecules. Together, the results suggest that hyaluronan is involved in the formation of early mesoderm, differentiation of craniofacial mesenchyme, and morphogenesis of the axial skeleton.  相似文献   

16.
17.
Orthotopic grafts of [3H]thymidine-labelled cells have been used to demonstrate differences in the normal fate of tissue located adjacent to and in different regions of the primitive streak of 8th day mouse embryos developing in vitro. The posterior streak produces predominantly extraembryonic mesoderm, while the middle portion gives rise to lateral mesoderm and the anterior region generates mostly paraxial mesoderm, gut and notochord. Embryonic ectoderm adjacent to the anterior part of the streak contributes mainly to paraxial mesoderm and neurectoderm. This pattern of colonization is similar to the fate map constructed in primitive-streak-stage chick embryos. Similar grafts between early-somite-stage (9th day) embryos have established that the older primitive streak continues to generate embryonic mesoderm and endoderm, but ceases to make a substantial contribution to extraembryonic mesoderm. Orthotopic grafts and specific labelling of ectodermal cells with wheat germ agglutinin conjugated to colloidal gold (WGA-Au) have been used to analyse the recruitment of cells into the paraxial mesoderm of 8th and 9th day embryos. The continuous addition of primitive-streak-derived cells to the paraxial mesoderm is confirmed and the distribution of labelled cells along the craniocaudal sequence of somites is consistent with some cell mixing occurring within the presomitic mesoderm.  相似文献   

18.
The developmental fate of cells in the epiblast of early-primitive-streak-stage mouse embryos was assessed by studying the pattern of tissue colonisation displayed by lac Z-expressing cells grafted orthotopically to nontransgenic embryos. Results of these fate-mapping experiments revealed that the lateral and posterior epiblast contain cells that will give rise predominantly to mesodermal derivatives. The various mesodermal populations are distributed in overlapping domains in the lateral and posterior epiblast, with the embryonic mesoderm such as heart, lateral, and paraxial mesoderm occupying a more distal position than the extraembryonic mesoderm. Heterotopic grafting of presumptive mesodermal cells results in the grafted cells adopting the fate appropriate to the new site, reflecting a plasticity of cell fate determination before ingression. The first wave of epiblast cells that ingress through the primitive streak are those giving rise to extraembryonic mesoderm. Cells that will form the mesoderm of the yolk sac and the amnion make up a major part of the mesodermal layer of the midprimitive-streak-stage embryo. Cells that are destined for embryonic mesoderm are still found within the epiblast, but some have been recruited to the distal portion of the mesoderm. By the late-primitive-streak-stage, the mesodermal layer contains only the precursors of embryonic mesoderm. This suggests that there has been a progressive displacement of the midstreak mesoderm to extraembryonic sites, which is reminiscent of that occurring in the overlying endodermal tissue. The regionalisation of cell fate in the late-primitive-streak mesoderm bears the same spatial relationship as their ancestors in the epiblast prior to cell ingression. This implies that both the position of the cells in the proximal-distal axis and their proximity to the primitive streak are major determinants for the patterning of the embryonic mesoderm. © 1995 Wiley-Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号