首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

2.
FiveP. bryantii B14 16S rRNA gene copies and their flanking regions were cloned and analyzed. A genomic library was constructed and screened with oligonucleotide DNA probe specific for 16S rRNA gene ofP. bryantii. Five out of six different copies of 16S RNA gene were recovered and sequenced. Only minor differences (0.3–1.2%) between copies were detected within the 1541 bp long sequence. The impact of the sequence variability of 16S rRNA gene copies on phylogenetic positioning ofP. bryantii was determined. All five sequences from clonedP. bryantii B14 16S rRNA genes were placed in the same operational taxonomy unit. Control regions of all five analyzed rRNA operatons were almost identical and three candidate for promoter sequences were identified by Neutral Network Promoter Prediction. Spacer regions between 16S-rRNA and 23S rRNA genes in all five cloned copies were 543 bp long and genes for tRNAlle and tRNAAla were identified inside this regions.  相似文献   

3.
Halophilic archaeon AJ6 was isolated and purified from the Altun Mountain National Nature Reserve of the Xinjiang Uygur Autonomous Region. Strain AJ6 is a Gram-negative rod whose size is 0.2–0.6 by 1.6–4.2 μm, wherein a few cells are globular. The optimum salt concentration for its growth is 20% NaCl and 0.6% Mg2+, and the optimum pH is 6.0–7.0. Morphological, physiological, and biochemical characteristics of strain AJ6 were observed. The 16S rRNA encoding gene (16S rDNA) sequence of strain AJ6 was amplified by PCR, and its nucleotide sequence was determined subsequently. “Clustalw” and “PHYLIP” software bags were used to analyze the 16S rDNA sequence; the homology was compared, and then the phylogenetic tree was established. The results indicate that strain AJ6 is a novel species of the genus Natrinema. The GenBank accession number of the 16S rDNA sequences of strain AJ6 is AY277584. Translated from Journal of Zhejiang University (Science Edition), 2005, 32(1) (in Chinese)  相似文献   

4.
A Gram-staining-negative, motile, non-spore-forming and rod-shaped bacterial strain, 20-23RT, was isolated from intestine of bensasi goatfish, Upeneus bensasi, and its taxonomic position was investigated by using a polyphasic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 20-23RT belonged to the genus Shewanella. Strain 20-23RT exhibited 16S rRNA gene sequence similarity values of 99.5, 99.2, and 97.5% to Shewanella algae ATCC 51192T, Shewanella haliotis DW01T, and Shewanella chilikensis JC5T, respectively. Strain 20-23RT exhibited 93.1–96.0% 16S rRNA gene sequence similarity to the other Shewanella species. It also exhibited 98.3–98.4% gyrB sequence similarity to the type strains of S. algae and S. haliotis. Strain 20-23RT contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-8 and Q-7. The fatty acid profiles of strain 20–23RT, S. algae KCTC 22552T and S. haliotis KCTC 12896T were similar; major components were iso-C15:0, C16:0, C16:1 ω7c and/or iso-C15:0 2-OH and C17:1 ω8c. The DNA G+C content of strain 20-23RT was 53.9 mol%. Differential phenotypic properties and genetic distinctiveness of strain 20–23RT, together with the phylogenetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain 20-23RT represents a novel species of the genus Shewanella, for which the name Shewanella upenei sp. nov. is proposed. The type strain is 20–23RT (=KCTC 22806T =CCUG 58400T).  相似文献   

5.
A hyperthermophilic heterotrophic archaeon (strain WB1) was isolated from a thermal pool in the Washburn hot spring group of Yellowstone National Park, USA. WB1 is a coccus, 0.6–1.2 μm in diameter, with a tetragonal S-layer, vacuoles, and occasional stalk-like protrusions. Growth is optimal at 84°C (range 64–93°C), pH 5–6 (range 3.5–8.5), and <1 g/l NaCl (range 0–4.6 g/l NaCl). Tests of metabolic properties show the isolate to be a strict anaerobe that ferments complex organic substrates. Phylogenetic analysis of the 16S rRNA gene sequence places WB1 in a clade of previously uncultured Desulfurococcaceae and shows it to have ≤96% 16S rRNA sequence identity to Desulfurococcus mobilis, Staphylothermus marinus, Staphylothermus hellenicus, and Sulfophobococcus zilligii. The 16S rRNA gene contains a large insertion similar to homing endonuclease introns reported in Thermoproteus and Pyrobaculum species. Growth is unaffected by the presence of S0 or SO4 2−, thereby differentiating the isolate from its closest relatives. Based on phylogenetic and physiological differences, it is proposed that isolate WB1 represents the type strain of a novel genus and species within the Desulfurococcaceae, Thermogladius shockii gen. nov., sp. nov. (RIKEN = JCM-16579, ATCC = BAA-1607, Genbank 16S rRNA gene = EU183120).  相似文献   

6.
A bacterial strain, designated KMM 6244T, was isolated from the sea urchin Strongylocentrotus intermedius and subjected to a polyphasic taxonomic investigation. The bacterium was found to be heterotrophic, aerobic, non-motile and spore-forming. Comparative phylogenetic analysis based on 16S rRNA gene sequencing placed the marine isolate in the genus Bacillus. The nearest neighbor of strain KMM 6244T was Bacillus decolorationis LMG 19507T with a 16S rRNA gene sequence similarity of 98.0%. Sequence similarities with the other recognized Bacillus species were less than 96.0%. The results of the DNA–DNA hybridization experiments revealed a low relatedness (37%) of the novel isolate with the type strain of B. decolorationis LMG 19507T. Strain KMM 6244T grew at 4–45°C and with 0–12% NaCl. It produced catalase and oxidase and hydrolyzed aesculin, casein, gelatin and DNA. The predominant fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and iso-C14:0. The DNA G + C content was 39.4 mol%. A combination of phylogenetic, genotypic and phenotypic data clearly indicated that strain KMM 6244T represents a novel species in the genus Bacillus, for which the name Bacillus berkeleyi sp. nov. is proposed. The type strain is KMM 6244T (KCTC 12718T = LMG 26357T).  相似文献   

7.
Zhang XF  Yao TD  Tian LD  Xu SJ  An LZ 《Microbial ecology》2008,55(3):476-488
The microbial abundance, the percentage of viable bacteria, and the diversity of bacterial isolates from different regions of a 83.45-m ice core from the Puruogangri glacier on the Tibetan Plateau (China) have been investigated. Small subunit 16S rRNA sequences and phylogenetic relationships have been studied for 108 bacterial isolates recovered under aerobic growth conditions from different regions of the ice core. The genomic fingerprints based on ERIC (enterobacterial repetitive intergenic consensus)-polymerase chain reaction and physiological heterogeneity of the closely evolutionary related bacterial strains isolated from different ice core depths were analyzed as well. The results showed that the total microbial cell, percentages of live cells, and the bacterial CFU ranged from 104 to 105 cell ml−1 (Mean, 9.47 × 104; SD, 5.7 × 104, n = 20), 25–81%, and 0–760 cfu ml−1, respectively. The majority of the isolates had 16S rRNA sequences similar to previously determined sequences, ranging from 92 to 99% identical to database sequences. Based on their 16S rRNA sequences, 42.6% of the isolates were high-G + C-content (HGC) gram-positive bacteria, 35.2% were low-G + C (LGC) gram-positive bacteria, 16.6% were Proteobacteria, and 5.6% were CFB group. There were clear differences in the depth distribution of the bacterial isolates. The isolates tested exhibited unique phenotypic properties and high genetic heterogeneity, which showed no clear correlation with depths of bacterial isolation. This layered distribution and high heterogeneity of bacterial isolates presumably reflect the diverse bacterial sources and the differences in bacteria inhabiting the glacier’s surface under different past climate conditions.  相似文献   

8.
The primary structures of the genes encoding the β-subunits of a type II topoisomerase (gyrase, gyrB) and a type IV topoisomerase (parE) were determined for 15 strains of thermophilic bacteria of the genus Geobacillus. The obtained sequences were used for analysis of the phylogenetic similarity between members of this genus. Comparison of the phylogenetic trees of geobacilli constructed on the basis of the 16S rRNA, gyrB, and parE gene sequences demonstrated that the level of genetic distance between the sequences of the genes encoding the β-subunits of type II topoisomerases significantly exceeded the values obtained by comparative analysis of the 16S rRNA gene sequences of Geobacillus strains. It was shown that, unlike the 16S rRNA gene analysis, comparative analysis of the gyrB and parE gene sequences provided a more precise determination of the phylogenetic position of bacteria at the species level. The data obtained suggest the possibility of using the genes encoding the β-subunits of type II topoisomerases as phylogenetic markers for determination of the species structure of geobacilli.  相似文献   

9.
The aim of this study was to evaluate the inter-and intraspecific as well as intragenomic variability of Geobacillus 16S–23S rRNA internal transcribed spacers without tRNA genes and to compare these sequences with sequences bearing tRNA genes. In this study the structural analysis was performed in a unique way because the length and the sequence of the structural blocks were adjusted to fit the structure of 16S–23S rRNA internal transcribed spacers of five different Geobacillus species. Our study demonstrated the mosaic-like structure of 16S–23S rRNA internal transcribed spacers in Geobacillus. Some characteristics of these spacers of geobacilli were not previously reported for other bacteria: unusually short conserved sequence in the 5′ end region, some identical conserved blocks in both 5′ and 3′ regions of 16S–23S rRNA internal transcribed spacers, the same sequence blocks in both 16S–23S and 23S–5S rRNA intergenic spacers. Our study demonstrated quite uniform arrangement of the sequence blocks in Geobacillus thermodenitrificans. This species diverged early in the phylogenetic tree of the genus Geobacillus. For the phylogenetically recent species Geobacillus kaustophilus and Geobacillus lituanicus the low inter-and intraspecific, but high intragenomic variability, as a consequence of recent phylogenetic events, was established.  相似文献   

10.
A moderately halophilic, Gram-positive, catalase- and oxidase-positive, rod-shaped, aerobic bacterium, designated strain JSM 071068T, was isolated from a sea anemone (Anthopleura xanthogrammica) collected from the Naozhou Island on the Leizhou Bay in the South China Sea. Cells were motile by means of peritrichous flagella and formed ellipsoidal endospores lying in subterminal swollen sporangia. Strain JSM 071068T was able to grow with 1–20% (w/v) total salts (optimum, 6–9%), at pH values of 6.0–10.0 (optimum, pH 7.5) and a temperature range of 10–35°C (optimum, 25°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7 and the major cellular fatty acids were anteiso-C15:0, anteiso-C17:0 and iso-C15:0. The genomic DNA G + C content was 42.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 071068T belonged to the genus Halobacillus. The 16S rRNA gene sequence similarities between strain JSM 071068T and the type strains of the recognized Halobacillus species ranged from 97.9% (with Halobacillus alkaliphilus) to 95.3% (with Halobacillus kuroshimensis). The levels of DNA–DNA relatedness between the new isolate and the type strains of H. alkaliphilus, Halobacillus campisalis, Halobacillus halophilus and Halobacillus seohaensis were 25.6, 22.1, 10.8 and 13.2%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 071068T represents a new species of the genus Halobacillus, for which the name Halobacillus naozhouensis sp. nov. is proposed, with JSM 071068T (=DSM 21183T =KCTC 13234T) as the type strain. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 071068T is EU925615.  相似文献   

11.
A novel Gram-negative, slightly halophilic, catalase- and oxidase-positive, obligately aerobic bacterium, strain YIM-C248T, was isolated from a sediment sample collected from a salt-lake in the Qaidam Basin in Qinghai, north-west China. Cells were non-sporulating short rods, occurring singly or as doublets, motile with peritrichous flagella. Growth occurred with 1–15% (w/v) NaCl [optimum 2–4% (w/v) NaCl], at pH 6.0–10.0 (optimum pH 7.5) and at 4–35°C (optimum 25–30°C). The major cellular fatty acids were C18:1 ω7c, C12:0 3-OH, cyclo C19:0 ω8c, C16:0 and C16:1. The predominant respiratory quinone was Q-9 and the genomic DNA G + C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM-C248T should be assigned to the genus Halomonas. The sequence similarities between the isolate and the type strains of members of the genus Halomonas were in the range of 92.5–97.5%. The combination of phylogenetic analysis, DNA–DNA hybridization data, phenotypic characteristics and chemotaxonomic differences supported the view that strain YIM-C248T represents a new species of the genus Halomonas, for which the name Halomonas sediminis sp. nov. is proposed, with YIM-C248T (=CCTCC AA 207031 = KCTC 22167) as the type strain. The GenBank/EMBL/DBBJ accession number for the 16S rRNA gene sequence of strain YIM-C248T is EU135707.  相似文献   

12.
A novel Gram-negative, catalase- and oxidase-positive, strictly aerobic, non spore-forming, rod-shaped bacterium, designated strain JSM 083058T, was isolated from non-saline forest soil in Hunan Province, China. Growth occurred with 0–8% (w/v) NaCl (optimum, 0.5–3%) at pH 6.0–10.0 (optimum, pH 7.0) and at 5–35°C (optimum, 25–30°C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 083058T fell within the cluster comprising species of the genus Sphingomonas, clustering with Sphingomonas aestuarii K4T, with which it shared highest 16S rRNA gene sequence similarity (99.2%). The chemotaxonomic properties of strain JSM 083058T were consistent with those of the genus Sphingomonas. The predominant respiratory quinone was ubiquinone Q-10, and the major cellular fatty acids were summed feature 8 (C18:1ω7c/C18:1ω6c), C16:0, summed feature 3 (C16:1ω7c/C16:1ω6c) and C17:1ω6c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid. The genomic DNA G+C content of strain JSM 083058T was 65.5 mol%. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 083058T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas hunanensis sp. nov. is proposed. The type strain is JSM 083058T (=CCTCC AA 209011T = DSM 22213T).  相似文献   

13.
A novel Gram-negative and rod-shaped bacterium, designated N8T, was isolated from tidal flat sediment. Phylogenetic analysis based on 16S rRNA gene sequences showed that N8T strain is associated with the family Phyllobacteriaceae: two uncultured clones (98.4 and 99.8% 16S rRNA gene sequence similarity) and the genus Mesorhizobium (≤97.0%). The novel strain formed a separate clade with uncultured clones in the phylogenetic tree based on 16S rRNA gene sequences. Cellular fatty acid profiles predominately comprised C18:1 ω7c and C19:0 cyclo ω8c. The major isoprenoid quinone is ubiquinone-10 and genomic DNA G+C content is 53.4 mol%. The polyphasic taxonomic study indicates that the novel strain N8T represents a novel species of the new genus in the family Phyllobacteriaceae, named Aliihoeflea aestuarii. The type strain is N8T (= KCTC 22052T= JCM 15118T= DSM 19536T).  相似文献   

14.
A Gram-stain-negative, non-motile, rod-shaped bacterial strain, JW-64-1T, capable of degrading methamidophos was isolated from a methamidophos-manufacturing factory in China, and was subjected to a polyphasic taxonomic investigation. Strain JW-64-1T produced circular, smooth, transparent, yellow-colored colonies (1.0–2.0 mm) on LB agar after 2 days incubation. It grew optimally at 25–30°C and pH 7.0 without the presence of NaCl. The G+C content of the total DNA was 63.6 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain JW-64-1T fell within the cluster comprising Luteibacter species. The 16S rRNA gene sequence of strain JW-64-1T was most closely related to Luteibacter rhizovicinus DSM 16549T (98.6%), followed by Luteibacter yeojuensis DSM 17673T (98.4%) and L. anthropi CCUG 25036T (98.2%). The major cellular fatty acids of strain JW-64-1T were iso-C15:0 (24.1%), iso-C17:0 (20.2%) and summed feature 9 comprising iso-C17:1 ω9c and/or C16:0 10-methyl (20.3%). The major isoprenoid quinine was Q-8 (98%), and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphoaminolipid, aminolipids-1, aminolipids-2, and phospholipids. The values for DNA–DNA relatedness between strain JW-64-1T and the closest phylogenetic relatives of L. rhizovicinus and Luteibacter yeojuensis were 34.8 ± 2.6 and 25.6 ± 3.1%, respectively. On the basis of the phenotypic, chemotaxonomic, DNA–DNA relatedness and phylogenetic analysis based on the 16S rRNA gene sequences, strain JW-64-1T represents a novel species of the genus Luteibacter, for which the name Luteibacter jiangsuensis sp. nov. is proposed. The type strain is JW-64-1T (=CGMCC 1.10133T = DSM 22396T).  相似文献   

15.
Zhao GZ  Zhu WY  Li J  Xie Q  Xu LH  Li WJ 《Antonie van Leeuwenhoek》2011,100(4):521-528
An aerobic, non-motile, catalase-positive, Gram-stain positive actinomycete designated YIM 63233T was isolated from the surface-sterilized leaves of Artemisia annua L. and characterized using a polyphasic taxonomic approach. Optimal growth occurred at 20–28°C, pH 6.0–7.0 and in the presence of 0–3% (w/v) NaCl. 16S rRNA gene sequence-based phylogenetic analysis showed that strain YIM 63233T clustered with species of the genus Pseudonocardia, displaying ≥1.2% sequence divergence with recognized species of this genus (from 98.8 to 94.0%). Relatively low levels of DNA–DNA relatedness were found between strain YIM 63233T and Pseudonocardia petroleophila IMSNU 22072T, which supported the classification of strain YIM 63233T within a novel species of the genus Pseudonocardia. The G + C content of genomic DNA was 72.0 mol%. Strain YIM 63233T possessed chemotaxonomic markers that were consistent with classification in the genus Pseudonocardia, i.e. the predominant fatty acids were iso-C16:0 (32.27%), C16:0 10-methyl (8.73%) and C17:1ω8c (8.30%), whilst the predominant menaquinone was MK-8(H4). The diagnostic diamino acid of the cell-wall peptidoglycan was meso-diaminopimelic acid. The major cell wall sugars were glucose, arabinose, galactose, mannose and rhamnose. The results of physiological and biochemical tests and DNA–DNA hybridization allowed the phenotypic and genotypic differentiation of strain YIM 63233T from its closest phylogenetic neighbours. Therefore, the new isolate YIM 63233T represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia serianimatus sp. nov. is proposed. The type strain is YIM 63233T (=DSM 45302T = CCTCC AA 208079T).  相似文献   

16.
In this study, we infer the phylogenetic relationships within commercial shrimp using sequence data from a novel mitochondrial marker consisting of an approximately 530-bp region of the 16S ribosomal RNA (rRNA)/transfer RNA (tRNA)Val genes compared with two other mitochondrial genes: 16S rRNA and cytochrome c oxidase I (COI). All three mitochondrial markers were considerably AT rich, exhibiting values up to 78.2% for the species Penaeus monodon in the 16S rRNA/tRNAVal genes, notably higher than the average among other Malacostracan mitochondrial genomes. Unlike the 16S rRNA and COI genes, the 16S rRNA/tRNAVal marker evidenced that Parapenaeus is more closely related to Metapenaeus than to Solenocera, a result that seems to be more in agreement with the taxonomic status of these genera. To our knowledge, our study using the 16S rRNA/tRNAVal gene as a marker for phylogenetic analysis offers the first genetic evidence to confirm that Pleoticus muelleri and Solenocera agassizi constitute a separate group and that they are more related to each other than to genera belonging to the family Penaeidae. The 16S rRNA/tRNAVal region was also found to contain more variable sites (56%) than the other two regions studied (33.4% for the 16S rRNA region and 42.7% for the COI region). The presence of more variable sites in the 16S rRNA/tRNAVal marker allowed the interspecific differentiation of all 19 species examined. This is especially useful at the commercial level for the identification of a large number of shrimp species, particularly when the lack of morphological characteristics prevents their differentiation.  相似文献   

17.
Comparative 16S rRNA gene sequence and genomic DNA reassociation analyses were used to assess the phylogenetic relationships of Methanobrevibacter fecal isolates. The 16S rRNA gene sequences of Methanobrevibacter smithii strain PS and the human fecal isolates B181 and ALI were essentially identical, and their genomic DNA reassociated at values greater than 94%. The analysis of 16S rRNA sequences of the horse, pig, cow, rat, and goose fecal isolates confirm that they are members of the genus Methanobrevibacter. They had a high degree of sequence similarity (97–98%) with the 16S rRNA gene of M. smithii, indicating that they share a common line of descent. The 16S rRNA genes of the horse and pig isolates had 99.3% sequence similarity. Sequence analysis of the 16S rRNA gene of the sheep fecal isolate showed that it formed a separate line of descent in the genus Methanobrevibacter. Genomic DNA reassociation studies indicate that the horse, pig, cow, and goose fecal isolates represent at least three new species. The horse and pig isolates were the only animal isolates that had > 70% genomic DNA reassociation and represent strains of a single species. The cow, goose, and sheep isolates had little or no genomic DNA reassociation with M. smithii or with each other. The relationship of the rat isolate to the other animal isolates was not determined. An evaluation of the relationship of 16S rRNA gene sequence similarity and genomic DNA reassociation of Methanobrevibacter and other methanogenic archaea indicated that genomic DNA reassociation studies are necessary to establish that two methanogenic organisms belong to the same species. Received: 17 November 1997 / Accepted: 16 January 1998  相似文献   

18.
A novel Gram-positive, halotolerant, non-sporulating, non-motile, catalase-positive, oxidase-negative and aerobic bacterium, designated strain JSM 078085T, was isolated from sea water collected from the South China Sea. Strain JSM 078085T exhibited a rod-coccus growth cycle and produced a yellow pigment. The strain was able to grow in the presence of 0–12% (w/v) NaCl and at pH 6.0–9.5 and 4–35°C; optimum growth was observed at pH 7.0 and 25–30°C in the absence of NaCl. The peptidoglycan type was A4α (l-Lys–l-Ala–l-Glu). Cell-wall sugars contained galactose and glucose. Strain JSM 078085T contained menaquinone MK-9(H2) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the major polar lipids. The major cellular fatty acids were anteiso-C15:0, iso-C15:0 and anteiso-C17:0 and the DNA G + C content was 63.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 078085T should be assigned to the genus Arthrobacter, being most closely related to the type strain of Arthrobacter rhombi (sequence similarity 97.1%), and the two strains formed a distinct lineage in the phylogenetic tree. The level of DNA–DNA relatedness between strain JSM 078085T and the type strain of Arthrobacter rhombi was 10.6%. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078085T represents a novel species of the genus Arthrobacter, for which the name Arthrobacter halodurans sp. nov. is proposed. The type strain is JSM 078085T (=DSM 21081T=KCTC 19430T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 078085T is EU583729.  相似文献   

19.
The marine green coccoidal alga Nanochlorum eukaryotum (N.e.) is of small size with an average diameter of 1.5 m. It is characterized by primitive-appearing biochemical and morphological properties, which are considerably different from those of other green algae. Thus, it has been proposed that N.e. may be an early developed algal form. To prove this hypothesis, DNA of N.e. was isolated by a phenol extraction procedure, and the chloroplast DNA separated by preparative CsCl density-gradient centrifugation. The kinetic complexity of the nuclear and of the chloroplast DNA was evaluated by reassociation kinetics to 3 × 107 by and 9 × 104 bp, respectively. Several chloroplast genes, including the rRNA genes, were cloned on distinct fragments. The order of the rRNA genes corresponds to the common prokaryotic pattern. The 16S rRNA gene comprises 1,548 bases and is separated from the 23S rRNA gene with its 2,920 bases by a short spacer of 460 bases, which also includes the tRNAIle and tRNAAla genes. The 5S rRNA gene has not been found; it must start further than 500 bases downstream from the 3-end of the 23S rRNA gene. From the chloroplast rRNA sequences, we have deduced secondary structures of the 16S and 23S rRNAs, which are in agreement with standard models. The rRNA sequences were aligned with corresponding chloroplast sequences; phylogenetic relationships were calculated by several methods. From these calculations, we conclude that N.e. is most closely related to Chlorella vulgaris. Therefore, N.e. does not represent an early developed algal species; the primitive-appearing morphological and biochemical characteristics of N.e. must rather be explained by secondary losses. Correspondence to: D. Weinblum  相似文献   

20.
A Gram-positive, moderately halophilic, endospore-forming, catalase- and oxidase-positive, motile, rod-shaped, aerobic bacterium, designated strain JSM 089168T, was isolated from saline soil collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 2–25% (w/v) total salts (optimum, 5–10%), at pH 6.0–10.0 (optimum, pH 8.0) and 10–45°C (optimum, 30°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The strain contained MK-7 as the predominant menaquinone, and diphosphatidylglycerol and phosphatidylglycerol as the major polar lipids. The major cellular fatty acids were anteiso-C15:0, iso-C15:0 and anteiso-C17:0, and the DNA G + C content was 40.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 089168T should be assigned to the genus Virgibacillus, being related most closely to the type strains of Virgibacillus carmonensis (sequence similarity 97.6%), Virgibacillus necropolis (97.3%) and Virgibacillus halodenitrificans (97.1%). Levels of DNA–DNA relatedness between strain JSM 089168T and the type strains of V. carmonensis, V. necropolis and V. halodenitrificans were 20.4, 14.3 and 12.0%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 089168T represents a novel species of the genus Virgibacillus, for which the name Virgibacillus litoralis sp. nov. is proposed. The type strain is JSM 089168T (=DSM 21085T =KCTC 13228T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 089168T is FJ425909.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号