共查询到20条相似文献,搜索用时 15 毫秒
1.
R. A. Khazigaleeva S. V. Vinogradova V. L. Petrova I. A. Fesenko G. P. Arapidi A. M. Kamionskaya V. M. Govorun V. T. Ivanov 《Russian Journal of Bioorganic Chemistry》2017,43(3):248-254
Plant and animal cells contain pools of endogenous peptides, which are the degradation products of functionally active proteins. It is known that these peptides can possess biological activity; however, the functions of most of them are unknown. The goal of the present study was to estimate the antimicrobial potential of endogenous peptides resulting from the degradation of functional proteins in cells of the moss Physcomitrella patens. Earlier, 117 peptides possessing an antimicrobial potential predicted in silico have been identified in the peptidomes of three types of P. patens cells by mass spectrometry. In the present work, the antimicrobial activity of six of these peptides toward the gram-positive bacteria Bacillus subtilis SHgw and Clavibacter michiganensis pv. michiganensis and gram-negative bacteria Escherichia coli K12 and Xanthomonas arboricola 3004 has been revealed. The results have shown that three of six peptides inhibit the growth of the phytopathogenic bacteria X. arboricola and C. m. pv. michiganensis; four peptides inhibit the growth of the gram-negative bacterium E. coli K12, and one peptide inhibits the growth of the gram-positive bacterium B. subtilis. It has been found that the peptides inhibiting the bacterial growth are predominantly the fragments of ribosomal proteins. The work confirms the potential of the biological activity of peptides that are the degradation products of functional proteins. 相似文献
2.
The CESA gene superfamily of Arabidopsis and other seed plants comprises the CESA family, which encodes the catalytic subunits of cellulose synthase, and eight families of CESA-like (CSL) genes whose functions are largely unknown. The CSL genes have been proposed to encode processive β-glycosyl transferases that synthesize noncellulosic cell wall polysaccharides.
BLAST searches of EST and shotgun genomic sequences from the moss Physcomitrella patens (Hedw.) B.S.G. were used to identify genes with high similarity to vascular plant CESAs, CSLAs, CSLCs, and CSLDs. However, searches using Arabidopsis CSLBs, CSLEs, and CSLGs or rice CSLFs or CSLHs as queries identified no additional CESA superfamily members in P. patens, indicating that this moss lacks representatives of these families. Intron insertion sites are highly conserved between Arabidopsis
and P. patens in all four shared gene families. However, phylogenetic analysis strongly supports independent diversification of the shared
families in mosses and vascular plants. The lack of orthologs of vascular plant CESAs in the P. patens genome indicates that the divergence of mosses and vascular plants predated divergence and specialization of CESAs for primary and secondary cell wall syntheses and for distinct roles within the rosette terminal complexes. In contrast
to Arabidopsis, the CSLD family is highly represented among P. patens ESTs. This is consistent with the proposed function of CSLDs in tip growth and the central role of tip growth in the development of the moss protonema.
Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.
Accession numbers: DQ417756, DQ417757, DQ898284–6, DQ898147–54, DQ902545–51. 相似文献
3.
4.
Background
Aquaporins, also called major intrinsic proteins (MIPs), constitute an ancient superfamily of channel proteins that facilitate the transport of water and small solutes across cell membranes. MIPs are found in almost all living organisms and are particularly abundant in plants where they form a divergent group of proteins able to transport a wide selection of substrates. 相似文献5.
Inés Ponce de León Juan Pablo Oliver Alexandra Castro Carina Gaggero Marcel Bentancor Sabina Vidal 《BMC plant biology》2007,7(1):52
Background
Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i) whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora) and Botrytis cinerea (B. cinerea), could infect Physcomitrella, and ii) whether B. cinerea, elicitors of a harpin (HrpN) producing E.c. carotovora strain (SCC1) or a HrpN-negative strain (SCC3193), could cause disease symptoms and induce defense responses in Physcomitrella. 相似文献6.
Many RNA recognition motif (RRM)-containing proteins are known to exist in chloroplasts. Major members of the RRM protein family, which are chloroplast ribonucleoproteins (cpRNPs), have been investigated in seed plants, including tobacco and Arabidopsis thaliana, but never in early land plants, such as bryophytes. In this study, we surveyed RRM proteins encoded in the moss Physcomitrella patens genome and predicted 25 putative chloroplast RRM proteins. Among them, two RRM-containing proteins, PpRBP2a and PpRBP2b, resembled cpRNPs and were thus referred to as cpRNP-like proteins. However, knockout mutants of either one or two PpRBP2 genes exhibited a wild type-like phenotype. Unlike Arabidopsis cpRNPs, the levels of mRNA accumulation in chloroplasts were not affected in the PpRBP2 knockout mutants. In addition, the efficiency of RNA editing was also not altered in the mutants. This suggests that PpRBP2a and 2b may be functionally distinct from Arabidopsis cpRNPs. 相似文献
7.
The moss Physcomitrella patens is suitable for systems biology studies, as it can be grown axenically under standardised conditions in plain mineral medium
and comprises only few cell types. We report on metabolite profiling of two major P. patens tissues, filamentous protonema and leafy gametophores, from different culture conditions. A total of 96 compounds were detected,
21 of them as yet unknown in public databases. Protonema and gametophores had distinct metabolic profiles, especially with
regard to saccharides, sugar derivates, amino acids, lignin precursors and nitrogen-rich storage compounds. A hydroponic culture
was established for P. patens, and was used to apply drought stress under physiological conditions. This treatment led to accumulation of osmoprotectants,
such as altrose, maltitol, ascorbic acid and proline. Thus, these osmoprotectants are not unique to seed plants but have evolved
at an early phase of the colonization of land by plants. 相似文献
8.
Arabidopsis ACT2 represents an ancient class of vegetative plant actins and is strongly and constitutively expressed in almost all Arabidopsis sporophyte vegetative tissues. Using the beta glucuronidase report system, the studies showed that ACT2 5′ regulatory region was significantly more active than CaMV 35S promoter in Arabidopsis seedlings and gametophyte vegetative tissues of Physcomitrella patens. Its activity was also observed in rice and maize seedlings. Thus, the ACT2 5′ regulatory region could potentially serve as a strong regulator to express a transgene in divergent plant species. ACT2 5′ regulatory region contained 15 conserved sequence elements, an ancient intron in its 5′ un-translated region (5′ UTR),
and a purine-rich stretch followed by a pyrimidine-rich stretch (PuPy). Mutagenesis and deletion analysis illustrated that
some of the conserved sequence elements and the region containing PuPy sequences played regulatory roles in Arabidopsis. Interestingly, mutation of the conserved elements did not lead a dramatic change in the activity of ACT2 5′ regulatory region. The ancient intron in ACT2 5′ UTR was required for its strong expression in both Arabidopsis and P. patens, but did not fully function as a canonical intron. Thus, it was likely that some of the conserved sequence elements and gene
structures had been preserved in ACT2 5′ regulatory region over the course of land plant evolution partly due to their functional importance. The studies provided
additional evidences that identification of evolutionarily conserved features in non-coding region might be used as an efficient
strategy to predict gene regulatory elements. 相似文献
9.
Karen L. Koster Ronald A. Balsamo Catherine Espinoza Melvin J. Oliver 《Plant Growth Regulation》2010,62(3):293-302
The moss Physcomitrella patens is becoming the model of choice for functional genomic studies at the cellular level. Studies report that Physcomitrella survives moderate osmotic and salt stress, and that desiccation tolerance can be induced by exogenous ABA. Our goal was to
quantify the extent of dehydration tolerance in wild type moss and to examine the nature of cellular damage caused by desiccation.
We exposed Physcomitrella to humidities that generate water potentials from −4 (97% RH) to −273 MPa (13% RH) and monitored water loss until equilibrium.
Water contents were measured on a dry matter basis to determine the extent of dehydration because fresh weights (FW) were
found to be variable and, therefore, unreliable. We measured electrolyte leakage from rehydrating moss, assessed overall regrowth,
and imaged cells to evaluate their response to drying and rehydration. Physcomitrella did not routinely survive water potentials <−13 MPa. Upon rehydration, moss dried to water contents >0.4 g g dm−1 maintained levels of leakage similar to those of hydrated controls. Moss dried to lower water contents leaked extensively,
suggesting that plasma membranes were damaged. Moss protonemal cells were shrunken and their walls twisted, even at −13 MPa.
Moss cells rehydrated after drying to −273 MPa failed to re-expand completely, again indicating membrane damage. ABA treatment
elicited tolerance of desiccation to at least −273 MPa and limited membrane damage. Results of this work will form the basis
for ongoing studies on the functional genomics of desiccation tolerance at the cellular level. 相似文献
10.
Side branch formation in the moss, Physcomitrella patens, has been shown to be light dependent with cryptochrome 1a and 1b (Ppcry1a and Ppcry1b), being the blue light receptors for
this response (Imaizumi et al. in Plant Cell 14:373, 2002). In this study, detailed photobiological analyses were performed,
which revealed that this response involves multiple photoreceptors including cryptochromes. For light induction of branches,
blue light of a fluence rate higher than 6 μmol m−2 s−1 for period longer than 3 h is required. The number of branches increased with the increase in fluence rate and in the irradiation
period. The number of branches also increased when red light was applied together with the blue light, although red light
alone had a very few effect. By partially irradiating a cell, both receptive sites for blue and red light were found to be
located around the nucleus. Further, both red and blue light determine the positions of branches being dependent upon the
vibration plane of polarized light. Red light control of branch position was nullified by simultaneous far-red light irradiation.
A blue light effect on branch position was not found in lines with disrupted phototropin genes. Thus, dichroic phytochrome
and phototropin, possibly on the plasma membrane, regulate branch position. These results indicate that at least four distinct
photoreceptor systems, namely, cryptochromes and red light receptor around or in the nucleus, dichroic phytochrome and phototropin
around the cell periphery, are involved in the light induction of side branches in the moss Physcomitrella patens. 相似文献
11.
Nakata M Watanabe Y Sakurai Y Hashimoto Y Matsuzaki M Takahashi Y Satoh T 《Plant molecular biology》2004,56(3):381-395
We identified 77 EST clones encoding germin-like proteins (GLPs) from a moss, Physcomitrella patens in a database search. These Physcomitrella GLPs (PpGLPs) were separated into seven groups based on DNA sequence homology. Phylogenetic analysis showed that these groups were divided into two novel clades clearly distinguishable from higher plant germins and GLPs, named bryophyte subfamilies 1 and 2. PpGLPs belonging to bryophyte subfamilies 1 lacked two cysteines at the conserved positions observed in higher plant germins or GLPs. PpGLPs belonging to bryophyte subfamily 2 contained two cysteines as observed in higher plant germins and GLPs. In bryophyte subfamily 1, 12 amino acids, in which one of two cysteines is included, were deleted between boxes A and B. Further, we determined the genomic structure of all of seven PpGLP genes. The sequences of PpGLPs of bryophyte subfamily 1 contained one or two introns, whereas those of bryophyte subfamily 2 contained no introns. Other GLPs from bryophytes, a liverwort GLP from Marchantia polymorpha, and two moss GLPs from Barbula unguiculata and Ceratodon purpureus also fell into bryophyte subfamily 1 and bryophyte subfamily 2, respectively. No higher plant germins and GLPs were grouped into the bryophyte subfamilies 1 and 2 by our analysis. Moreover, we revealed that PpGLP6 had manganese-containing extracellular superoxide dismutase activity. These results indicated that bryophyte possess characteristic GLPs, which phylogenetically are clearly distinguishable from higher plant GLPs. 相似文献
12.
With the discovery of targeted gene replacement, moss biology has been rapidly advancing over the last 10 years. This study demonstrates the usefulness of moss as a model organism for plant photosynthesis research. The two mosses examined in this study, Physcomitrella patens and Ceratodon purpureus, are easily cultured through vegetative propagation. Growth tests were conducted to determine carbon sources suitable for maintaining heterotrophic growth while photosynthesis was blocked. Photosynthetic parameters examined in these plants indicated that the photosynthetic activity of Ceratodon and Physcomitrella is more similar to vascular plants than cyanobacteria or green algae. Ceratodon plants grown heterotrophically appeared etiolated in that the plants were taller and plastids did not differentiate thylakoid membranes. After returning to the light, the plants developed green, photosynthetically active chloroplasts. Furthermore, UV-induced mutagenesis was used to show that photosynthesis-deficient mutant Ceratodon plants could be obtained. After screening approximately 1000 plants, we obtained a number of mutants, which could be arranged into the following categories: high fluorescence, low fluorescence, fast and slow fluorescence quenching, and fast and slow greening. Our results indicate that in vivo biophysical analysis of photosynthetic activity in the mosses can be carried out which makes both mosses useful for photosynthesis studies, and Ceratodon best sustains perturbations in photosynthetic activity. 相似文献
13.
14.
15.
Physcomitrella patens is well known because of its importance in the study of plant systematics and evolution. The tolerance of P. patens for high-salinity environments also makes it an ideal candidate for studying the molecular mechanisms by which plants respond to salinity stresses. We measured changes in the proteome of P. patens gametophores that were exposed to high-salinity (250, 300, and 350 mM NaCl) using two-dimensional gel electrophoresis (2-DE) via liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sixty-five protein spots were significantly altered by exposure to the high-salinity environment. Among them, 16 protein spots were down-regulated and 49 protein spots were up-regulated. These proteins were associated with a variety of functions, including energy and material metabolism, protein synthesis and degradation, cell defense, cell growth/division, transport, signal transduction, and transposons. Specifically, the up-regulated proteins were primarily involved in defense, protein folding, and ionic homeostasis. In summary, we outline several novel insights into the response of P. patens to high-salinity; (1) HSP70 is likely to play a significant role in protecting proteins from denaturation and degradation during salinity stress, (2) signaling proteins, such as 14-3-3 and phototropin, may work cooperatively to regulate plasma membrane H(+)-ATPase and maintain ion homeostasis, (3) an increase in photosynthetic activity may contribute to salinity tolerance, and (4) ROS scavengers were up-regulated suggesting that the antioxidative system may play a crucial role in protecting cells from oxidative damage following exposure to salinity stress in P. patens. 相似文献
16.
The presence of the tetracyclic diterpene 16-hydroxykaurane (16-hydroxy-ent-kaurane, C20H34O, CAS 5524–17–4) was detected in sterile cell cultures of the moss Physcomitrella patens (Hedw.) B.S.G. using gas chromatography and mass spectrometry. 16-hydroxykaurane was found to be a major lipid compound in P. patens, with an estimated intracellular concentration of up to 0.84 mmol/l and an extracellular concentration of up to 9.3 µmol/l. The overall content of 16-hydroxykaurane (in milligrams) produced per culture reached 0.37-fold that of chlorophyll a+b. In agar cultures with low air exchange, 16-hydroxykaurane forms needle-like crystals on tissue and on the inner surface of the culture vessels, indicating that it is being released into the atmosphere. Solid phase microextraction confirmed the air-bound release of 16-hydroxykaurane. To our knowledge this is the first report on the release of a plant-derived tetracyclic diterpene into the air.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by R. ReskiThis work is dedicated to the 65th birthday of Prof. Heinz Hahn. 相似文献
17.
Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth. 相似文献
18.
P. K. Harshavardhan Koduri Graeme S. Gordon Elizabeth I. Barker Che C. Colpitts Neil W. Ashton Dae-Yeon Suh 《Plant molecular biology》2010,72(3):247-263
Enzymes of the chalcone synthase (CHS) superfamily catalyze the production of a variety of secondary metabolites in bacteria,
fungi and plants. Some of these metabolites have played important roles during the early evolution of land plants by providing
protection from various environmental assaults including UV irradiation. The genome of the moss, Physcomitrella patens, contains at least 17 putative CHS superfamily genes. Three of these genes (PpCHS2b, PpCHS3 and PpCHS5) exist in multiple copies and all have corresponding ESTs. PpCHS11 and probably also PpCHS9 encode non-CHS enzymes, while PpCHS10 appears to be an ortholog of plant genes encoding anther-specific CHS-like enzymes. It was inferred from the genomic locations
of genes comprising it that the moss CHS superfamily expanded through tandem and segmental duplication events. Inferred exon–intron architectures and results from
phylogenetic analysis of representative CHS superfamily genes of P. patens and other plants showed that intron gain and loss occurred several times during evolution of this gene superfamily. A high
proportion of P. patens
CHS genes (7 of 14 genes for which the full sequence is known and probably 3 additional genes) are intronless, prompting speculation
that CHS gene duplication via retrotransposition has occurred at least twice in the moss lineage. Analyses of sequence similarities,
catalytic motifs and EST data indicated that a surprisingly large number (as many as 13) of the moss CHS superfamily genes probably encode active CHS. EST distribution data and different light responsiveness observed with selected
genes provide evidence for their differential regulation. Observed diversity within the moss CHS superfamily and amenability to gene manipulation make Physcomitrella a highly suitable model system for studying expansion
and functional diversification of the plant CHS superfamily of genes. 相似文献
19.
20.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes. 相似文献