首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The feasibility of improving mass transfer characteristics of inclined tubular photobioreactors by installation of static mixers was investigated. The mass transfer characteristics of the tubular photobioreactor varied depending on the type (shape) and the number of static mixers. The volumetric oxygen transfer coefficient ( k(L)a) and gas hold up of the photobioreactor with internal static mixers were significantly higher than those of the photobioreactor without static mixers. The k(L)a and gas hold up increased with the number of static mixers but the mixing time became longer due to restricted liquid flow through the static mixers. By installing the static mixers, the liquid flow changed from plug flow to turbulent mixing so that cells were moved between the surface and bottom of the photobioreactor. In outdoor culture of Chlorella sorokiniana, the photobioreactor with static mixers gave higher biomass productivities irrespective of the standing biomass concentration and solar radiation. The effectiveness of the static mixers (average percentage increase in the productivities of the photobioreactor with static mixers over the productivities obtained without static mixers) was higher at higher standing biomass concentrations and on cloudy days (solar radiation below 6 MJ m(-2) day(-1)).  相似文献   

2.
Simulations of light intensity variation in photobioreactors   总被引:2,自引:0,他引:2  
In photobioreactors, turbulent flow conditions and light gradients frequently occur. Thus, algal cells cultivated in such reactors experience fluctuations in light intensity. This work presents a new method for the calculation of these light-dark patterns. The investigation is focused on temporal and spatial aspects of light patterns which may affect the photosynthetic reaction. The method combines computational fluid dynamics simulations of three-dimensional turbulent single-phase fluid flow with statistical particle tracking and signal analysis. In this way, light-dark phases are derived which affect singular (algal) cells. An example case is presented of a tubular photobioreactor in which static mixers are used for the efficient mixing of liquid and also of gases with liquid. Particle trajectories representing the path of algal cells were analysed to obtain light fluctuations on single cells. Particles were exposed to light-dark phases with frequencies between 3 and 25Hz in a helical mixer at a mean velocity of 0.5ms(-1), which contrasts to the case of a tube without static mixers, where only frequencies of 0.2-3.1Hz were obtained under the same conditions. The simulations show the potential of improving radial flow in a tubular photobioreactor by means of using a static mixer and the usefulness of CFD and trajectory analysis for scale-down/scale-up.  相似文献   

3.
An externally illuminated tubular photobioreactor was constructed from 3.4 m stainless steel tubes and 22.1 m glass tubes for the cultivation of photoautotrophic organisms. The 30‐L reactor can be equipped with helical static mixers in order to create a uniform radial exchange within the tubes, 40 mm in diameter. A flexible construction of the reactor allows scale‐down experiments to be carried out with axial velocities between 0.3–2.5 m/s, gassing‐in rates of 0–0.5 L/min, kL a values of 0.002–0.006 s–1 and six metal halide lamps inducing photon flux densities in the range of 70–300 μE/m2s. Two model organisms, the green microalgae Chlorella vulgaris and the bryophyte Physcomitrella patens, were chosen to characterize cell growth and physiology in submerse cultures. Comparative experiments with Chlorella vulgaris in two configurations of the reactor with inserted helical static mixers and plates resulted in maximum growth rates of 1.6 d–1. No growth enhancement was obtained in the case of helical static mixers at a mean PFD of 150 μE/m2s and an axial velocity of 0.4 m/s. No homogenous flow could be obtained in the case of inserted plates. Physcomitrella patens was successfully cultivated in the reactor (μ = 0.36 d–1), whereas average axial velocities of ca. 0.6 m/s guarantee favorable gas transport without contributing to cell damage. This makes tubular photobioreactors a promising production system for the production of glycosylated recombinant proteins derived from moss.  相似文献   

4.
Microalgae cultivation has received growing importance because of its potential applications in CO2 bio‐fixation, wastewater treatment and biofuel production. In this regard, proper design of photobioreactors is crucial for large‐scale commercial applications. The hydrodynamics of a photobioreactor has great influence on the transfer of CO2 from gas phase to liquid phase. Considering the facts, the present research focused on studying the gas holdups and mass transfer from the gas to liquid phase in a tubular photobioreactor at various superficial liquid velocities ranging from 8.4 to 22.4 cm/s and superficial gas velocities ranging from 3.66 to 8.1 cm/s. It was found that the gas holdups were radially distributed. The highest gas holdups were observed at the center zone while the lowest holdups are found near the reactor wall. CO2 mass transfer coefficient in the photobioreactor was also estimated under different superficial liquid velocities (0.206, 0.355 and 0.485 cm/s) and gas velocities (0.67, 1.16 and 1.37 cm/s). The overall mass transfer coefficient was estimated by fitting the experimental data and comparing results with an unsteady state differential mole balance equation solved by Runge‐Kutta‐Gill method. Model predictions were comparable to experimental results.  相似文献   

5.
The fluid dynamic environment within a photobioreactor is critical for performance as it controls mass transfer of photosynthetic gases (CO2 and O2) and the mixing environment of the algal culture. At a cellular level, light fluctuation will occur when cells move between the “light”, well-illuminated volume of the culture near the light source and the “dark”, self-shaded zone of the culture. Controlled light/dark frequency may increase the light to biomass yield and prevent photoinhibition. Knowledge of cell trajectories within the reactor is therefore important to optimize culture performance. This study examines the cell trajectories and light/dark frequencies in a stratified gas–liquid flow tubular photobioreactor. Commercially available computational fluid dynamics software, ANSYS Fluent, was used to investigate cell trajectories within the half-full solar receivers at different liquid velocities and reactor tube diameters. In the standard configuration 96-mm solar receiver tube, the light/dark cycle frequencies ranged from 0.104 to 0.612?Hz over the liquid velocity range of 0.1 to 1?m s?1. In comparison, the smaller diameter 48- and 24-mm tubes exhibit higher light/dark frequencies, 0.219 to 1.30?Hz and 0.486 to 2.67?Hz, respectively.  相似文献   

6.
In this work, the hydrodynamic characteristics in tubular photobioreactors with a series of helical static mixers built-in were numerically investigated using computational fluid dynamics (CFD). The influences of height and screw pitch of the helical static mixer and fluid inlet velocity on the cell trajectories, swirl numbers and energy consumption were examined. In order to verify the actual results for cultivation of microalgae, cultivation experiments of freshwater Chlorella sp. were carried out in photobioreactor with and without helical static mixer built-in at the same time. It was shown that with built-in helical static mixer, the mixing of fluid could be intensified, and the light/dark cycle could also be achieved which is of benefit for the growth of microalgae. The biomass productivity of Chlorella sp. in tubular photobioreactor with helical static mixer built-in was 37.26 % higher than that in the photobioreactor without helical static mixer.  相似文献   

7.
Engineering analyses combined with experimental observations in horizontal tubular photobioreactors and vertical bubble columns are used to demonstrate the potential of pneumatically mixed vertical devices for large-scale outdoor culture of photosynthetic microorganisms. Whereas the horizontal tubular systems have been extensively investigated, their scalability is limited. Horizontal tubular photobioreactors and vertical bubble column type units differ substantially in many ways, particularly with respect to the surface–to–volume ratio, the amount of gas in dispersion, the gas–liquid mass transfer characteristics, the nature of the fluid movement and the internal irradiance levels. As illustrated for eicosapentaenoic acid production from the microalga Phaeodactylum tricornutum, a realistic commercial process cannot rely on horizontal tubular photobioreactor technology. In bubble columns, presence of gas bubbles generally enhances internal irradiance when the Sun is low on the horizon. Near solar noon, the bubbles diminish the internal column irradiance relative to the ungassed state. The optimal dimensions of vertical column photobioreactors are about 0.2 m diameter and 4 m column height. Parallel east–west oriented rows of such columns located at 36.8°N latitude need an optimal inter-row spacing of about 3.5 m. In vertical columns the biomass productivity varies substantially during the year: the peak productivity during summer may be several times greater than in the winter. This seasonal variation occurs also in horizontal tubular units, but is much less pronounced. Under identical conditions, the volumetric biomass productivity in a bubble column is 60% of that in a 0.06 m diameter horizontal tubular loop, but there is substantial scope for raising this value.  相似文献   

8.
Longer mixing times and higher power consumption are common problems in the design of photobioreactors. In this study, a vertical triangular external airlift loop photobioreactor was designed, constructed and operated for microalgae production studies. Gas feeding was performed by two spargers: one at the bottom of the hypotenuse (downcomer) and another at the bottom of the vertical side (riser). This configuration provided more effective countercurrent liquid–gas flow in the hypotenuse. The mass transfer coefficient, gas hold-up, mixing time, circulation time, dimensionless mixing time, bubble size, and volumetric power consumption were measured and optimized using response surface methodology. Investigations were carried out on the performance of the riser (the vertical side), downcomer (the hypotenuse), and separator. The countercurrent flow in the hypotenuse provided sufficient contact between gas and liquid phases, and increased mixing and mass transfer rates, in contrast to the results of previous studies. The promising results of this geometry were shorter mixing time and a significant decrease in volumetric power consumption in comparison with other configurations for photobioreactors.  相似文献   

9.
Effect of tube diameter on steam-in-place sterilization of dead-ended tubes was studied by examining temperature profiles and rates of kill of Bacillus stearothermophilus spores. Time required for sterilization was determined for 9.4-cm-long tubes with various inside diameters from 0.4 to 1.7 cm. Sterilization time increased with decreasing tube diameter. Experimentally measured kill kinetics in 1.7-cm tubes were in agreement with those predicted if measured temperatures represented saturated steam. A 12-log spore reduction was achieved in 1.7-cm diameter vertical and horizontal tubes in less than 63 minutes. For smaller diameter tubes, entrapped air remained after 2 hours and rates of kill were very dependent on position within the tube, tube diameter, and tube orientation with respect to the gravitational vector. Times to achieve a 1-log drop in spore population in the smaller tubes were as much as 10 times greater than those expected if measured temperatures represented saturated steam. Sterilization was not achieved throughout the 0.4-cm tubes. Recommendations are made for including steam bleeders or using prevaccum cycles for these smaller diameter tubes. (c) 1993 John Wiley & Sons, Inc.  相似文献   

10.
A tubular photobioreactor for outdoor cultivation of Spirulina platensis was successfully operated for the last two years. The reactor was made of transparent 2.4-cm diameter tubes with a total length of approximately 101-m and a volume of 124-liter. Flow was induced using an airlift pumping system. To optimize the system further, a larger tube diameter was also tested. Preliminary results have suggested that a larger tube diameter might provide increased output with reduced surface area requirements. Results of experiments comparing the productivity of the same culture volume in tubes of 2.4 cm and 5.0 cm will be presented which show a small decrease in productivity by volume, but a large increase in areal productivity. This suggests that the larger tube diameter would be an appropriate choice for larger scale systems. Additionally, data will be presented demonstrating the effectiveness of an on-line surface scatter turbidimeter for accurate measurement of Spirulina density when correlated to manual dry weight measurements.  相似文献   

11.
In photobioreactors, which are usually operated under light limitation,sufficient dissolved inorganic carbon must be provided to avoid carbonlimitation. Efficient mass transfer of CO2 into the culture mediumisdesirable since undissolved CO2 is lost by outgassing. Mass transferof O2 out of the system is also an important consideration, due tothe need to remove photosynthetically-derived O2 before it reachesinhibitory concentrations. Hydrodynamics (mixing characteristics) are afunctionof reactor geometry and operating conditions (e.g. gas and liquid flow rates),and are a principal determinant of the light regime experienced by the culture.This in turn affects photosynthetic efficiency, productivity, and cellcomposition. This paper describes the mass transfer and hydrodynamics within anear-horizontal tubular photobioreactor. The volume, shape and velocity ofbubbles, gas hold-up, liquid velocity, slip velocity, axial dispersion,Reynoldsnumber, mixing time, and mass transfer coefficients were determined intapwater,seawater, and algal culture medium. Gas hold-up values resembled those ofvertical bubble columns, and the hydraulic regime could be characterized asplug-flow with medium dispersion. The maximum oxygen mass transfer coefficientis approximately 7 h–1. A regime analysisindicated that there are mass transfer limitations in this type ofphotobioreactor. A methodology is described to determine the mass transfercoefficients for O2 stripping and CO2 dissolution whichwould be required to achieve a desired biomass productivity. This procedure canassist in determining design modifications to achieve the desired mass transfercoefficient.  相似文献   

12.
Tubular photobioreactor design for algal cultures.   总被引:3,自引:0,他引:3  
Principles of fluid mechanics, gas-liquid mass transfer, and irradiance controlled algal growth are integrated into a method for designing tubular photobioreactors in which the culture is circulated by an airlift pump. A 0.2 m(3) photobioreactor designed using the proposed approach was proved in continuous outdoor culture of the microalga Phaeodactylum tricornutum. The culture performance was assessed under various conditions of irradiance, dilution rates and liquid velocities through the tubular solar collector. A biomass productivity of 1.90 g l(-1) d(-1) (or 32 g m(-2) d(-1)) could be obtained at a dilution rate of 0.04 h(-1). Photoinhibition was observed during hours of peak irradiance; the photosynthetic activity of the cells recovered a few hours later. Linear liquid velocities of 0.50 and 0.35 m s(-1) in the solar collector gave similar biomass productivities, but the culture collapsed at lower velocities. The effect of dissolved oxygen concentration on productivity was quantified in indoor conditions; dissolved oxygen levels higher or lower than air saturation values reduced productivity. Under outdoor conditions, for given levels of oxygen supersaturation, the productivity decline was greater outdoors than indoors, suggesting that under intense outdoor illumination photooxidation contributed to loss of productivity in comparison with productivity loss due to oxygen inhibition alone. Dissolved oxygen values at the outlet of solar collector tube were up to 400% of air saturation.  相似文献   

13.
Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation   总被引:5,自引:0,他引:5  
Photobioreactor design and operation are discussed in terms of mixing, carbon utilization, and the accumulation of photosynthetically produced oxygen. The open raceway pond is the primary type of reactor considered; however small diameter (1-5 cm) horizontal glass tubular reactors are compared to ponds in several respects. These are representative of the diversity in photobioreactor design: low capital cost, open systems and high capital cost, closed systems. Two 100-m(2) raceways were operated to provide input data and to validate analytical results. With a planktonic Chlorella sp., no significant difference in productivity was noted between one pond mixed at 30 cm/s and another mixed from 1 to 30 cm/s. Thus, power consumption or CO(2) outgassing limits maximal mixing velocities. Mixing power inputs measured in 100-m(2) ponds agreed fairly well with those calculated by the use of Manning's equation. A typically configured tubular reactor flowing full (1 cm diameter, 30 cm/s) consumes 10 times as much energy as a typical pond (20 cm deep flowing at 20 cm/s). Tubular reactors that flow only partially full would be limited by large hydraulic head losses to very short sections (as little as 2 m length at 30 cm/s flow) or very low flow velocities. Open ponds have greater CO(2) storage capacity than tubular reactors because of their greater culture volume per square meter (100-300 L/m(2) vs. 8-40 L/m(2) for 1-5-cm tubes). However, after recarbonation, open ponds tend to desorb CO(2) to the atmosphere. Thus ponds must be operated at higher pH and lower alkalinity than would be possible with tubular reactors if cost of carbon is a constraint. The mass transfer coefficient, K(L), for CO(2) release through the surface of a 100-m(2) pond was determined to be 0.10 m/h. Oxygen buildup would be a serious problem with any enclosed reactor, especially small-diameter tubes. At maximal rates of photosynthesis, a 1-cm tubular reactor would accumulate 8-10 mg O(2)/L/min. This may result in concentrations of oxygen reaching 100 mg/L, even with very frequent gas exchange. In an open pond, dissolved oxygen rises much more slowly as a consequence of the much greater volume per unit surface area and the outgassing of oxygen to the atmosphere. The maximum concentration of dissolved oxygen is typically 25-40 mg/L. The major advantage of enclosed reactors lies in the potential for aseptic operation, a product value which justifies the expense. For most products of algal mass cultivation, open ponds are the only feasible photobioreactor design capable of meeting the economic and operating requirements of such systems, provided desirable species can be maintained.  相似文献   

14.
Synechocystis aquatilis SI-2 was grown outdoors in a 12.5cm diam. tubular photobioreactor equipped with static mixers. The static mixers ensured that cells were efficiently circulated between the upper (illuminated) and lower (dark) sections of the tubes. The biomass productivity varied from 22 to 45g m–2d–1, with an average of 35g m–2d–1, etc which corresponded to average CO2 fixation rate of about 57 g CO2 m–2 d–1. The static mixers not only helped in improving the biomass productivities but also have a high potential to lower the photoinhibitory effect of light during the outdoor cultures of algae. Revisions requested 27 July 2004; Revisions received 12 November 2004  相似文献   

15.
The mass transfer and hydrodynamics of two outdoor tubular photobioreactor designs were compared, a Tredici-design near-horizontal tubular photobioreactor (NHTR) and an enhanced version of this reactor (ENHTR), for the purpose of improving algal growth via improved hydrodynamics. The enhancements included addition of vertical bubble columns at the sparger end and a larger degasser with a diffuser. Gas-liquid mass transfer and other performance measures were assessed for a range of gas sparging rates. The ENHTR modifications proved to be very successful, increasing oxygen stripping and carbon dioxide dissolution by 120–220 % and 0–50 %, respectively. There was an increase in axial mixing and a fourfold decrease in total mixing time. Experiments were conducted to determine that approximately 50 % of the mass transfer occurred in the vertical bubble columns, while 85–90 % of the mass transfer in the near-horizontal tubes occurred in the lower half of the tubes. These improvements can lead to increased algae productivity depending upon culture-specific parameters. The theoretical maximum productivity of a hypothetical algal culture would be 1.6 g m?2 h?1 in the NHTR, and we have previously achieved a maximum of 1.5 g m?2 h?1 growing Arthrospira at densities up to 7.5 g L?1 in this reactor. Due to enhanced mass transfer in the ENHTR, the predicted maximum productivity should increase to 4.75 g m?2 h?1. The potential for further improvements in productivity due to various additional enhancements is described.  相似文献   

16.
The present paper makes a comparative analysis of the outdoor culture of H. pluvialis in a tubular photobioreactor and a bubble column. Both reactors had the same volume and were operated in the same way, thus allowing the influence of the reactor design to be analyzed. Due to the large changes in cell morphology and biochemical composition of H. pluvialis during outdoor culture, a new, faster methodology has been developed for their evaluation. Characterisation of the cultures is carried out on a macroscopic scale using a colorimetric method that allows the simultaneous determination of biomass concentration, and the chlorophyll, carotenoid and astaxanthin content of the biomass. On the microscopic scale, a method was developed based on the computer analysis of digital microscopic images. This method allows the quantification of cell population, average cell size and population homogeneity. The accuracy of the methods was verified during the operation of outdoor photobioreactors on a pilot plant scale. Data from the reactors showed tubular reactors to be more suitable for the production of H. pluvialis biomass and/or astaxanthin, due to their higher light availability. In the tubular photobioreactor biomass concentrations of 7.0 g/L (d.wt.) were reached after 16 days, with an overall biomass productivity of 0.41 g/L day. In the bubble column photobioreactor, on the other hand, the maximum biomass concentration reached was 1.4 g/L, with an overall biomass productivity of 0.06 g/L day. The maximum daily biomass productivity, 0.55 g/L day, was reached in the tubular photobioreactor for an average irradiance inside the culture of 130 microE/m2s. In addition, the carotenoid content of biomass from tubular photobioreactor increased up to 2.0%d.wt., whereas that of the biomass from the bubble column remained roughly constant at values of 0.5%d.wt. It should be noted that in the tubular photobioreactor under conditions of nitrate saturation, there was an accumulation of carotenoids due to the high irradiance in this reactor, their content in the biomass increasing from 0.5 to 1.0%d.wt. However, carotenoid accumulation mainly took place when nitrate concentration in the medium was below 5.0mM, conditions which were only observed in the tubular photobioreactor. A similar behaviour was observed for astaxanthin, with maximum values of 1.1 and 0.2%d.wt. measured in the tubular and bubble column photobioreactors, respectively. From these data astaxanthin productivities of 4.4 and 0.12 mg/L day were calculated for the tubular and the bubble column photobioreactors. Accumulation of carotenoids was also accompanied by an increase in cell size from 20 to 35 microm, which was only observed in the tubular photobioreactors. Thus it may be concluded that the methodology developed in the present study allows the monitoring of H. pluvialis cultures characterized by fast variations of cell morphology and biochemical composition, especially in outdoor conditions, and that tubular photobioreactors are preferable to bubble columns for the production of biomass and/or astaxanthin.  相似文献   

17.
Pressure drop, gas hold-up, and oxygen transfer were investigated in a sieve tray column, a column with Koch motionless mixers, and a bubble column. The oxygen transfer experiments were conducted using cocurrent flow of gas and liquid under steady-state conditions with oxygen transfer from the gas to the liquid phase. The oxygen transfer rates and efficiencies of the sieve tray column and the column with Koch mixers were found to be superior to those of the conventional bubble column. Gas hold-up was also greater when sieve trays or Koch mixers were inserted in the tower. The pressure drop was found to be primarily due to the liquid head in all three columns.  相似文献   

18.
Despite the increasing importance of airlift fermentors, very little published information is available on how the geometric configurations of the draft tubes and the air-sparging system affect the mixing and oxygen transfer characteristics of the fermentor. A 14-L air-lift fermentor was designed and build with a fixed liquid height to diameter ratio of 1.5 utilizing four equally spaced air jets at the bottom. Two jet orifice sizes were used, 1.27 and 3.81 mm i.d., and for each jet size the following four geometric configurations were used: Single inner concentric draft tube, single outer concentric draft tube, two concentric draft tubes, and no draft tubes where the fermentor was operated as a shallow bubble column. It was found that the presence of draft tubes stabilized liquid circulation patterns and gave systemically higher mixing times than those obtained in the absence of draft tubes. In addition, the double draft tube geometry resulted in higher mixing times than the single draft tubes. For the power unit volume range 20 to about 250 W/m3 the larger 3.81-mm orifices gave systemically higher kL a values than the smaller 1.27-mm i.d. orifices. At 200 W/m3 the use of a single outer draft tube with the 3.81-mm orifices resulted in 94% increase in kL a values over that obtained with no draft tubes. However, the effect of draft tube geometry on kL a values when the 1.27-mm orifices were used was not significant. The air bubble formation characteristics at the jet orifices were found to be different, which reflected the differences observed in mass transfer and mixing characteristics. The power economy for oxygen transfer was found to be depend strongly on the orifice size and less on the geometric configuration of draft tubes.  相似文献   

19.
Oxygen transfer from gas to liquid under steady-state cocurrent flow conditions was modeled using the dispersion model, and the oxygen transfer coefficients were estimated from available data for a column with Koch motionless mixers. The dispersion in the column was estimated for several different gas and liquid flow rates using steady-state tracer experiments. The estimated oxygen transfer coefficients were compared with those estimated using complete mixing and plug flow models. The results indicate that the dispersion model is the most appropriate model for estimating the mass transfer coefficient from the available data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号