首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DEAE-Sephadex column chromatography step utilized to purify human Factor VII consistently yields a protein peak between the factor VII activity peak and prothrombin, factor X and factor IX activity peak (S.P. Bajaj, S.I. Rapaport, and S.F. Brown: J. Biol. Chem. 251, 253-259, 1981). We now report that this protein peak contains protein C and protein S. Preparative disc polyacrylamide gel electrophoresis of the proteins in this peak permitted a complete separation of protein C from protein S. Protein C at this step usually contained approximately 5-10% of Factor X, which could be removed by a goat anti-human Factor X antibody column. For a typical preparation, starting with 10L of plasma, the yield of Protein C was 5 mg and of protein S was 4 mg. Both proteins revealed apparent homogeneity in sodium dodecyl sulfate gel electrophoretic system. beta-Protein C and beta-protein S were not observed in our preparations starting with plasma collected directly into citrate anticoagulant containing benzamidine and soybean trypsin inhibitor, suggesting that these beta forms of protein C and protein S, isolated by other investigators, are slightly degraded forms of the native proteins. Antisera generated to these proteins were monospecific and could be used to monitor column fractions during purification. When examined by immunoelectrophoresis, the electrophoretic mobility of protein S in plasma was slower than that of isolated protein S. When exposed to plasmin, protein C was activated slightly and then rapidly degraded.  相似文献   

2.
The major human vitamin K-dependent proteins were purified from plasma using immunoadsorbents made with antibodies specific for each protein. Monoclonal antibodies to Factor VII, Factor IX, Factor X, Protein C, and Protein S were prepared from mice immunized with isolated vitamin K-dependent antigens. Purified monoclonal antibodies and a purified burro polyclonal anti-prothrombin immunoglobulin were individually coupled to Sepharose and used in a tandem series of columns to purify each of the vitamin K-dependent proteins from eluates of barium citrate precipitates of plasma. The proteins were eluted from the columns by sodium thiocyanate and retained functional activity following dialysis. Prothrombin, Factor VII, Factor IX, Factor X and Protein C were essentially homogeneous as judged by NaDodSO4-PAGE; Protein S was isolated as a Protein S-C4b binding protein complex. These results indicate the utility of monoclonal antibody immunoadsorbents for purifying the human vitamin K-dependent proteins and represent a considerable simplification over other purification schemes.  相似文献   

3.
A review is given of preparative methods for the isolation of the vitamin K-dependent clotting factors II, VII, IX, X and clotting inhibitor protein C, all derived from human plasma. Factor II, activated factor VII and activated protein C are also obtained from recombinant animal cells. The methods for their purification are described. The problem of difference in posttranslational modifications between plasma derived and recombinant protein is discussed with regard to therapeutic proteins.  相似文献   

4.
A murine monoclonal antibody (designated H-11) produced by injecting mice with purified human protein C was found to bind several human vitamin K-dependent proteins. Using a solid-phase competitive radioimmunoassay with antibody immobilized onto microtiter plates, binding of 125I-labeled protein C to the antibody was inhibited by increasing amounts of protein C, prothrombin, and Factors X and VII over a concentration range of 1 X 10(-8) to 1 X 10(-6) M. Other vitamin K-dependent proteins including Factor IX and protein S did not inhibit or inhibited only at the highest concentration binding of radiolabeled protein C to the immobilized antibody. Chemical treatment of prothrombin with a variety of agents including denaturation by sodium dodecyl sulfate, reduction with mercaptoethanol followed by carboxymethylation with iodoacetic acid, citraconylation of lysine residues, removal of metal ion with EDTA, or heat decarboxylation did not destroy the antigenic site recognized by the antibody as measured by immunoblotting of prothrombin or prothrombin derivative immobilized onto nitrocellulose. Immunoblotting of purified vitamin K-dependent polypeptides with the monoclonal antibody following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose indicated that the antigenic site was found on the light chains of protein C and Factor X. Chymotrypsin digestion of prothrombin and isolation on QAE-Sephadex of the peptide representing amino-terminal residues 1-44 of prothrombin further localized the antigenic site recognized by the monoclonal antibody to the highly conserved gamma-carboxyglutamic acid-containing domain. The exact location of the antigenic determinant for antibody H-11 was established using synthetic peptides. Antibody H-11 bound specifically to synthetic peptides corresponding to residues 1-12 of Factor VII and 1-22 of protein C. Comparison of protein sequences of bovine and human vitamin K-dependent proteins suggests that the sequence Phe-Leu-Glu-Glu-Xaa-Arg/Lys is required for antibody binding. The glutamic acid residues in this peptide segment are the first 2 gamma-carboxyglutamic acid residues near the amino-terminal end in the native proteins. Increasing concentrations of Ca2+, Mg2+, or Mn2+ partially inhibited binding of 125I-protein C to the antibody in a solid-phase assay system with half-maximal binding observed at divalent metal ion concentrations of 2, 4, and 0.6 mM, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Summary Gamma-carboxyglutamic acid is an amino acid with a dicarboxylic acid side chain. This amino acid, with unique metal binding properties, confers metal binding character to the proteins into which it is incorporated. This amino acid has been discovered in blood coagulation proteins (prothrombin, Factor X, Factor IX, and Factor VII), plasma proteins of unknown function (Protein C, Protein S, and Protein Z), and proteins from calcified tissue (osteocalcin and bone-Gla protein). It has also been observed in renal calculi, atherosclerotic plaque, and the egg chorioallantoic membrane, among other tissues. Gamma-carboxyglutamic acid is synthesized by the post-translational modification of glutamic acid residues. This reaction, catalyzed by a hepatic carboxylase, requires reduced vitamin K, oxygen, and carbon dioxide. The function of -carboxyglutamic acid is uncertain. In prothrombin y-carboxyglutamic acid residues bound to metal ions participate as an intramolecular non-covalent bridge to maintain protein conformation. Additionally, these amino acids participate in the calcium-dependent molecular assembly of proteins on membrane surfaces through intermolecular bridges involving y-carboxyglutamic acid and metal ions.  相似文献   

6.
The effect of Factor VII antibody and an antibody to the apoprotein of tissue factor has been tested on the product formed between Factor VII, tissue factor and calcium ions. The antibody to the apoprotein of tissue factor neutralized tissue factor but had no effect on the extrinsic Factor X activator activity when Factor VII had been allowed to react with tissue factor before the addition of the antibody. The Factor VII antibody neutralized Factor VII and it also blocked the Factor X activator activity when Factor VII had been incubated with tissue factor and calcium ions prior to the addition of Factor VII antibody.Diisopropylfluorophosphate (DFP) was found to neutralize native purified Factor VII and Factor VII in human plasma. This inhibition of Factor VII was very slow and required high concentrations of DFP. However, when the Factor VII had been preincubated with tissue factor and calcium ions, the neutralization of Factor VII by DFP occurred rapidly, and at much lower concentration of DFP.  相似文献   

7.
A murine monoclonal antibody (designated VII-M31) directed against bovine factor VII was prepared and characterized. Antibody VII-M31 inhibited the activations of both factors IX and X catalyzed by factor VIIa in the presence of tissue factor, phospholipids, and Ca2+. It possessed a strong affinity for factor VII in the presence of 5 mM Ca2+ (Kd = 1.12 x 10(-10)M). The immunoblotting test of other bovine proteins with the antibody, such as prothrombin, factor X, factor IX, protein C, protein S, and protein Z, in addition to human factor VII, revealed that it recognizes only a Ca2(+)-dependent epitope in bovine factor VII. Furthermore, this antibody VII-M31 covalently coupled with Affi-Gel allowed a simple and rapid purification of bovine factor VII. To localize the antigenic site in factor VII, various segments including a gamma-carboxyglutamic acid (Gla)-domainless protein, a Gla-domain peptide and the fragments isolated from the lysyl endopeptidase digest, were prepared. Among them, the isolated Gla-domain peptide and Gla-domainless factor VII were no longer recognized by antibody VII-M31, indicating that the sequence around the cleavage site by a-chymotrypsin is required for the interaction between the antibody and factor VII. In accordance with this result, the antibody bound specifically to a Gla-containing peptide corresponding to the NH2-terminal 23-50 residues of factor VII, which contains the chymotryptic cleavage site. These results suggest that the specific epitope of this antibody is localized in the carboxy-terminal 28 residues of the Gla-domain constituting the amino-terminal portion of bovine factor VII.  相似文献   

8.
1. A purification procedure for factor VII (proconvertin) from human plasma is described. The procedure involves barium sulphate adsorption and elution. DEAE-Sephadex column chromatography, barium sulphate adsorption and elution, heparin-Sepharose column chromatography, preparative disc gel electrophoresis and finally adsorption with antiserum to prothrombin coupled to Sepharose and antiserum to albumin coupled to Sepharose. This procedure gave an approximately 8 . 10(5)-fold purification. 2. The factor VII obtained from the electrophoresis step was mainly a single-chain protein with an apparent molecular weight of 53000 +/- 2000. 3. After the final purification step, additional forms of factor VII, resulting from a fragmentation of the factor VII molecule were detected. 4. Amino acid composition data of the purified factor VII are given. 5. Antisera were raised in two different rabbits by injection of the purified factor VII. The antisera obtained gave a good titre against the factor VII activity and were not directed against any of the three other vitamin-K-dependent coagulation factors.  相似文献   

9.
Using affinity chromatography on a column of factor X-Cellulofine, we have isolated a novel blood coagulation factor X-binding protein with anticoagulant activity from the venom of Trimeresurus flavoviridis (Habu snake). This anticoagulant protein was also purified by chromatography on Sephadex G-75 and S-Sepharose Fast Flow. The yield of the purified protein was approximately 16 mg from 400 mg of crude venom. The purified protein gave a single band on both analytical alkaline disc-gel electrophoresis and SDS-PAGE. This protein had a relative molecular weight (Mr) after SDS-PAGE of 27,000 before reduction of disulfide bonds and 14,000 after reduction of disulfide bonds. The protein prolonged the clotting time induced by kaolin or factor Xa. In the presence of Ca2+, it formed a complex with factor X, the molar ratio being 1 to 1. Similar complex formation was observed with factor Xa and factor IX/factor IXa, but not with other vitamin K-dependent coagulation factors, i.e., prothrombin, factor VII, protein C, protein S, and protein Z. The interaction of this anticoagulant protein with factor IX/factor X was dependent on gamma-carboxyglutamic acid (Gla) domains, since Gla-domainless derivatives of factor X and factor IXa beta' did not interact with this anticoagulant protein.  相似文献   

10.
The existence of circadian (24-h) rhythms in the coagulation activity of vitamin K-dependent coagulation factors (Factors II, VII, IX, and X) were studied in six healthy young (18-30 years old) and six healthy elderly (69-75 years old) men. Aliquots of 5 ml of blood were obtained from each of the 12 subjects at six different time points over a 24-h period. Factors II, VII, and X were quantified by the prothrombin time test, whereas Factor IX was analyzed by the activated partial thromboplastin time test. Significant circadian variations were found for Factors II and VII in both age groups. The peak and trough values for Factor II were observed at 16: 00 and 00: 00 in young men and at 12: 00 and 16: 00 in elderly men. The amplitude of the rhythmic variation of Factor II was 3.3 ± 1.0 and 4.2 ± 0.9% in young and elderly volunteers, respectively. For Factor VII, the highest values were found during the activity period (08: 00-16: 00), while the lowest values occurred at night (00: 00) for both groups of subjects. The amplitude of the rhythms was twice as large in the young (6.2 ± 2.3%) as in the elderly (3.7 ± 0.8%). The data suggest that age does not alter significantly the chronobiology of Factors II and VII.  相似文献   

11.
Identification and isolation of vitamin K-dependent proteins by HPLC   总被引:1,自引:0,他引:1  
Six of the seven known vitamin K-dependent proteins found in plasma were chromatographed on a large-pore propylsilane column using aqueous trifluoroacetic acid/acetonitrile gradients. Prothrombin and Factor VII coeluted, the others were readily resolved. The technique has been used to monitor the purification of protein C and protein S using immobilized anti-protein S. Preliminary evidence is presented which is suggestive of the existence of additional vitamin K-dependent proteins in plasma.  相似文献   

12.
Conclusive evidence is presented that a recently purified (Stenflo, J. (1976) J. Biol. Chem. 251, 355-363) vitamin K-dependent protein (arbitrarily referred to as Protein C) which is not related to prothrombin, Factors IX or X is also unrelated to Factor VII. It therefore appears to be a new, previously unrecognized vitamin K-dependent protein. In contrast to prothrombin, which binds to negatively charged phospholipid only in the presence of Ca2+ ions, Protein C, like the other vitamin K-dependent proteins, is a precursor of a serine esterase, presumably a protease, but it does not seem to be necessary for blood coagulation. Although the lipid-binding properties of Protein C may suggest that it is associated with membrane structures, its biological function remains unknown.  相似文献   

13.
The membrane-binding characteristics of a number of modified vitamin K-dependent proteins and peptides showed a general pattern of structural requirements. The amino-terminal peptides from human prothrombin (residues 1-41 and 1-44, 60:40) bovine factor X (residues 1-44), and bovine factor IX (residues 1-42), showed a general requirement for a free amino-terminal group, an intact disulfide, and the tyrosine homologous to Tyr44 of factor X for membrane binding. Consequently, the peptide from factor IX did not bind to membranes. Any of several modifications of the amino terminus, except reaction with trinitrobenzenesulfonic acid, abolished membrane binding by the factor X and prothrombin peptides. Calcium, but not magnesium, protected the amino terminus from chemical modification. The requirement for a free amino terminus was also shown to be true for intact prothrombin fragment 1, factor X, and factor IX. Although aggregation of the peptide-vesicle complexes greatly complicated accurate estimation of equilibrium binding constants, results with the factor X peptide indicated an affinity that was not greatly different from that of the parent protein. The most striking difference shown by the peptides was a requirement for about 10 times as much calcium as the parent proteins. In a manner similar to the parent proteins, the prothrombin and factor X peptides showed a large calcium-dependent quenching of tryptophan fluorescence. This fluorescence quenching in the peptides also required about 10 times the calcium needed by the parent proteins. Thus, the 1-45 region of the vitamin K-dependent proteins contained most of the membrane-binding structure but lacked component(s) needed for high affinity calcium binding. Protein S that was modified by thrombin cleavage at Arg52 and Arg70 showed approximately the same behavior as the amino-terminal 45-residue peptides. That is, it bound to membranes with overall affinity that was similar to native protein S but required high calcium concentrations. These results suggested that the second disulfide loop of protein S (Cys47-Cys72) and prothrombin (Cys48-Cys61) were involved in high affinity calcium binding. Since factor X lacks a homologous disulfide loop, an alternative structure must serve a similar function. A striking property of protein S was dissociation from membranes by high calcium. While this property was shared by all the vitamin K-dependent proteins, protein S showed this most dramatically and supported protein-membrane binding by calcium bridging.  相似文献   

14.
The chromatographic separation of four proteins, cytochrome c, alpha 1-acid glycoprotein, ovalbumin, and beta-lactoglobulin, was achieved on a 4.6 X 250-mm wide-pore polyethyleneimine (PEI)-silica gel column (5-micron particles, 330-A pore size) with essentially baseline resolution using a 20-min linear gradient from 0.025 M potassium phosphate, pH 6.80, to 0.50 M potassium phosphate, pH 6.80. The back pressure of this anion-exchange column was 1000 psi at a flow rate of 1.0 ml/min. Protein recoveries averaged over 95% and protein capacity exceeded 33 mg for a single protein. Isocratic elution (0.040 M potassium phosphate, pH 6.8; flow rate, 0.50 ml/min) of ovalbumin gave a column efficiency of 15,700 plates/m with a peak asymmetry factor of 1.27. Resolution of these same four proteins on a 4.6 X 50-mm PEI-silica gel column occurred within 2 min. Nucleoside monophosphates were separated on the short PEI-silica column within 1 min with 0.01 M potassium phosphate, pH 2.58, at a flow rate of 6 ml/min which generated a column back pressure of 2000 psi.  相似文献   

15.
G Soulban  G Labrecque 《Life sciences》1989,45(25):2485-2489
The 24-hr variations in clotting times and vitamin K-dependent blood coagulation factors were studied in rats kept on a 12-hr light-dark cycle (light on: 0600-1800 hours). Clotting times were determined under a binocular microscope by measuring the time required for the formation of the first fibrin thread. Factors II, VII and X were analyzed by the prothrombin test while the factor IX was quantified using the activated partial thromboplastin time assay. Results indicated that the clotting times were significantly longer during the dark (activity) period with a peak at 1:00 and a trough at 17:00. Similarly, a variation was found in factor activity levels: prothrombin (II), factor VII and factor X had higher activities during the light span (rest period). The highest activities found at 13:00 and 09:00 were statistically different from the minimum activity levels obtained at 21:00. Factor IX did not show a significant circadian variation.  相似文献   

16.
17.
The prothrombin-converting activity of Factor Xa was enhanced by thrombin-stimulated Factor V-deficient platelets and supplementary extraneous Factor Va, and also by thrombin-stimulated normal human platelets. Both extraneous Factor Va and intra-platelet Factor Va were equally inactivated by a gamma-carboxyglutamic acid-containing plasma protease, activated protein C. However, a relatively larger amount of activated protein C was required for efficient inactivation of platelet-associated Factor Va as compared with the amount of activated protein C needed for inactivation of phospholipid vesicle-associated Factor Va. Protein S, another gamma-carboxyglutamic acid-containing plasma protein, increased the rate of the inactivation of platelet-associated Factor Va about 25-fold. This stimulating effect was observed only slightly with the thrombin-modified protein S. Thus, it was concluded that protein S is essential for the process of inactivation of platelet-associated Factor Va by activated protein C.  相似文献   

18.
Subcellular fractionation of oviduct tissue from estrogen-treated chicks indicated that the bulk of the protein kinase activity of this tissue is located in the cytoplasmic and nuclear fractions, DEAE-cellulose chromatography of cytosol revealed a major peak of cAMP stimulatable activity eluting at 0.2 M KCl. This peak was further characterized and found to exhibit properties consistent with cytoplasmic cAMP dependent protein kinases isolated from other tissues; it had a Km for ATP of 2 X 10(-5) M, preferred basic proteins such as histones, as substrate, and had a M of 165 000. Addition of 10(-6) M cAMP caused the holoenzyme to dissociate into cAMP binding regulatory subunit and a protein kinase catalytic subunit. Extraction of purified oviduct nuclei with 0.3 M KCl released greater than 80% of the kinase activity in this fraction. Upon elution from phospho-cellulose, the nuclear extract was resolved into two equal peaks of kinase activity (designated I and II). Peak I had a sedimentation coefficient of 3S and a Km for ATP of 13 muM. while peak II had a sedimentation coefficient of 6S and a Km for ATP of 9 muM. Both enzymes preferred alpha-casein as a substrate over phosvitin or whole histone, although they exhibited different salt-activity profiles. The cytoplasmic and nuclear enzymes were well separated on phospho-cellulose and this resin was used to quantitate the amount of cAMP dependent histone kinase activity in the nucleus and the amount of casein kinase activity in the cytosol. Protein kinase activity in nuclei from estrogen-stimulated chicks was found to be 40% greater than hormone-withdrawn animals. This increase in activity was not due to translocation of the cytoplasmic protein kinase in response to hormone, but to an increase in nuclear (casein) kinase activity. During the course of this work, we observed small but significant amounts of cAMP binding activity very tightly bound to the nuclear fraction. Solubilization of the binding activity by sonication in high salt allowed comparison studies to be performed which indicated that the nuclear binding protein is identical with the cytoplasmic cAMP binding regulatory subunit. The possible role of the nuclear binding activity is discussed.  相似文献   

19.
An ATPase activity was found in rat brain microtubules prepared by successive cycles of polymerization and depolymerization. On phosphocellulose column chromatography, the ATPase activity was recovered in the fraction eluted with 0.6 M KCl and containing the microtubule associated proteins. The ATPase activity was markedly stimulated by the addition of purified brain 6S tubulin, and the stimulation was dependent on the presence of Ca2+ ions. Approximately 50 pmol of purified 6S tubulin was required for the maximal stimulation in the presence of 8 microgram of microtubule associated proteins. The specific activity was 8 to 13 nmol of ATP hydrolyzed per min per mg of protein at 37 degrees C, and the Km value for ATP was 3 X 10(-5) M in the presence of added tubulin.  相似文献   

20.
Interaction of vitamin K dependent proteins with membranes   总被引:12,自引:0,他引:12  
The membrane-binding characteristics of six vitamin K dependent plasma proteins, which have homologous amino acid sequences, were compared. All of these proteins display calcium-dependent membrane binding and the identified equilibria for protein-membrane binding are qualitatively the same for all proteins. Quantitative characteristics of these protein-membrane interactions allow organization into distinct subgroups. Protein C and factor VII form a subgroup which has extemely low affinity for bilayer membranes; prothrombin, factor X, and protein S form the tightest complexes with membranes and factor IX displays intermediate affinity. In the presence of manganese (which substitutes for calcium in a cation-dependent protein transition), calcium titration of protein-membrane binding shows the same calcium dependence for all proteins except prothrombin which requires lower calcium. These protein-membrane binding characteristics agree very well with the relatedness of these proteins based on their partial amino-terminal sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号