首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Data exists showing that seasonal changes in the innervations of GnRH cells in the hypothalamus and functions of some neural systems affecting GnRH neurons are associated with GnRH release in ewes. Consequently, we put the question as to how the expression of GnRH gene and GnRH-R gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland is reflected with LH secretion in anestrous and luteal phase ewes. Analysis of GnRH gene expression by RT-PCR in anestrous ewes indicated comparable levels of GnRH mRNA in the preoptic area, anterior and ventromedial hypothalamus. GnRH-R mRNA at different concentrations was found throughout the preoptic area, anterior and ventromedial hypothalamus, stalk/median eminence and in the anterior pituitary gland. The highest GnRH-R mRNA levels were detected in the stalk/median eminence and in the anterior pituitary gland.During the luteal phase of the estrous cycle in ewes, the levels of GnRH mRNA and GnRH-R mRNA in all structures were significantly higher than in anestrous ewes. Also LH concentrations in blood plasma of luteal phase ewes were significantly higher than those of anestrous ewes.In conclusion, results from this study suggest that low expression of the GnRH and GnRH-R genes in the hypothalamus and of the GnRH-R gene in the anterior pituitary gland, amongst others, may be responsible for a decrease in LH secretion and the anovulatory state in ewes during the long photoperiod.  相似文献   

10.
11.
12.
Using in situ hybridization histochemistry, we have mapped the anatomic localization of perikarya containing mRNA that codes for GnRH and GnRH-associated protein (GAP) in the forebrain of four male macaques, Macaca fascicularis. DNA oligomers, with sequences complementary to either the GnRH or the GAP portion of the mRNA sequence, were synthesized and hybridized to paraformaldehyde fixed, coronal sections of the basal forebrain and hypothalamus. GnRH mRNA was found in the same population of cells as those containing GAP mRNA. GnRH/GAP mRNA-containing cell bodies were observed consistently in the medial septal nucleus, the diagonal band of Broca, the medial preoptic area, supraoptic nucleus, and ventromedial-infundibular region. We detected the presence of GnRH mRNA and GAP mRNA within the same neuroanatomic regions previously shown to include perikarya containing immunoreactive GnRH. The ventromedial-infundibular region and the medial preoptic region contained the greatest number of GnRH/GAP mRNA-containing perikarya (37.0% and 22.5%, respectively). The diagonal band contained 21.0% and the supraoptic nucleus 13.0% of the cells, while the medial septum contained the fewest number (6.7%). This study demonstrates the feasibility of using in situ hybridization as a strategy to study the developmental and steroidal regulation of GnRH gene expression in the nonhuman primate.  相似文献   

13.
14.
Smith JT 《Peptides》2009,30(1):94-102
In recent years, the Kiss1 gene has been cast into the reproductive spotlight. In the short period since the discovered link between kisspeptins, the encoded peptides of Kiss1, and fertility, these peptides are now known to be critical for the neuroendocrine control of reproduction. Kisspeptin producing cells in the hypothalamus are poised to become the 'missing link' in the sex steroid feedback control of GnRH secretion. These cells contain all the necessary components to relay information of the sex steroid environment to GnRH neurons, which possess the kisspeptin receptor, GPR54. Sex steroids regulate Kiss1 mRNA, and kisspeptin expression in the hypothalamus, in a manner consistent with both negative and positive feedback control of GnRH. The precise nature of sex steroid effects, in particular those of estrogen, on Kiss1 expression have been extensively studied in the female rodent and ewe. In the arcuate nucleus (ARC) of both species, kisspeptin cells appear to forward signals pertinent to negative feedback regulation of GnRH, although in the ewe it appears this population of Kiss1 cell is also responsible for positive feedback regulation of GnRH at the time of the preovulatory GnRH/LH surge. In rodents, these positive feedback signals appear to be mediated by kisspeptin cells exclusively within the anteroventral periventricular nucleus (AVPV). There are no Kiss1 cells in the ovine AVPV, but there is a population in the preoptic area. The role these preoptic area cells play in the sex steroid feedback regulation of GnRH secretion, if any, is yet to be revealed.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号