首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The effects of interleukin-4(IL-4) on the growth and differentiation of mouse myeloid leukemia M1 cells induced by various differentiation inducers were investigated. IL-4 alone did not have any significant effect on the growth or differentiation of M1 cells, but inhibited their differentiation induced by dexamethasone, D-factor/leukemia inhibitory factor, or interleukin 6. IL-4 also restored the proliferation of M1 cells after growth inhibition during their induction of differentiation by inducers. In contrast, IL-4 enhanced inhibition of growth and induction of differentiation of M1 cells by 1 alpha,25-dihydroxyvitamin D3. These results indicate that modulation of differentiation of M1 cells by IL-4 depends on the differentiation inducer.  相似文献   

7.
8.
Okadaic acid (OA), an inhibitor of protein phosphatases 1 and 2A, induces differentiation in human MCF-7, AU-565, and MB-231 breast tumor cells. In MCF-7 cells, OA elicited within 5 min an increase in the levels of a set of phosphorylated cellular proteins, within hours expression of the early response genes junB, c-jun, and c-fos, and within days manifestation of differentiation. Differentiation was also induced by two related protein phosphatase inhibitors, but not by an inactive OA derivative or by an inhibitor that penetrates epithelial cells poorly. These results indicate that OA and related agents can induce tumor breast cell differentiation, and this induction is correlated with their ability to inhibit PPH 1 and 2A.  相似文献   

9.
10.
Rat thyroid cells in culture (FRTL-5 strain) require thyrotropic hormone (TSH) for growth. TSH alone in serum free medium is able to induce DNA synthesis of FRTL-5 cells. DNA synthesis occurs 18-20 hours following TSH stimulation of quiescent cells. Here we demonstrate that two sets of genes, related to the entry of cells in the S phase, are induced by TSH: 1) immediate early genes, such as c-jun and a gene coding for a zinc-finger protein Xrox 20/Egr2, both having a pattern of expression similar to the c-fos oncogene; 2) early delayed genes such as ornithine decarboxylase (ODC), 2F-1, a gene that shows a strong similarity in aminoacid sequence to a mitochondrial ADP/ATP carrier, and the asparagine synthetase gene (TS11). Furthermore, an increased expression of the histone H3 gene, a typical marker of S phase, has been observed in TSH-treated FRTL-5 cells.  相似文献   

11.
12.
13.
Interleukin (IL)-6 plays an important role in a wide range of biological activities, including differentiation of murine M1 myeloid leukemic cells into mature macrophages. At the onset of M1 differentiation, a set of myeloid differentiation primary response (MyD) genes are induced, including the proto-oncogene for JunB. In order to examine the molecular nature of the mechanisms by which IL-6 activates the immediate early expression of MyD genes, JunB was used as a paradigm. A novel IL-6 response element, -65/-52 IL-6RE, to which a 100-kDa protein complex is bound, has been identified on the JunB promoter. Leukemia inhibitory factor (LIF)-induced activation of JunB in M1 cells was also mediated via the -65/-52 IL-6RE. The STAT3 and CRE-like binding sites of the JunB promoter, identified as IL-6-responsive elements in HepG2 liver cells were found, however, to play no role in JunB inducibility by IL-6 in M1 myeloid cells. Conversely, the -65/-52 IL-6RE is shown not to be necessary for JunB inducibility by IL-6 or LIF in liver cells. It appears, therefore, that immediate early activation of JunB is regulated differently in M1 myeloid cells than in HepG2 liver cells. This indicates that distinct cis-acting control elements participate in cell type-specific induction of JunB by members of the IL-6 cytokine superfamily.  相似文献   

14.
With multiple divisions in culture, normal diploid cells suffer a loss of growth potential that leads to replicative senescence and a finite replicative capacity. Using quantitative RT-PCR, we have monitored mRNA expression levels of c-fos, c-jun, JunB, c-myc, p53, H-ras, and histone H4 during the replicative senescence of human fibroblasts. The earliest and the largest changes in gene expression occurred in c-fos and junB at mid-senescence prior to the first slowing in cell growth rates. The basal level of c-fos mRNA decreased to one-ninth that of the early-passage levels, while junB declined to one-third and c-jun expression remained constant. The decline in the basal c-fos mRNA level in mid-senescence should lead to an increase in Jun/Jun AP-1 homodimers at the expense of Fos/Jun heterodimers and may trigger a cascade of further changes in c-myc, p53, and H-ras expression in late-passage senescent fibroblasts.  相似文献   

15.
Cell numbers are regulated by a balance among proliferation, growth arrest, and programmed cell death. A profound example of cell homeostasis, controlled throughout life, is the complex process of blood cell development, yet little is understood about the intracellular mechanisms that regulate blood cell growth arrest and programmed cell death. In this work, using transforming growth factor beta 1 (TGF beta 1)-treated M1 myeloid leukemia cells and genetically engineered M1 cell variants, the regulation of growth arrest and apoptosis was dissected. Blocking of early expression of MyD118, a novel differentiation primary response gene also shown to be a primary response gene induced by TGF beta 1, delayed TGF beta 1-induced apoptosis, demonstrating that MyD118 is a positive modulator of TGF beta 1-mediated cell death. Elevated expression of bcl-2 blocked the TGF beta 1-induced apoptotic pathway but not growth arrest induced by TGF beta 1. Deregulated expression of either c-myc or c-myb inhibited growth arrest and accelerated apoptosis, demonstrating for the first time that c-myb plays a role in regulating apoptosis. In all cases, the apoptotic response was correlated with the level of MyD118 expression. Taken together, these findings demonstrate that the primary response gene MyD118 and the c-myc, c-myb, and bcl-2 proto-oncogenes interact to modulate growth arrest and apoptosis of myeloid cells.  相似文献   

16.
We have studied the production of interleukin 6 (IL-6) and its relation to the macrophage differentiation in murine myeloid leukemia cells (M1). As has been reported, differentiation-inducing factor (D-factor), 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25(OH)2D3], and recombinant IL-6 similarly induced differentiation of M1 cells into macrophages. The three compounds also induced mRNA expression of IL-6 in M1 cells. M1 cells treated with D-factor or 1 alpha, 25(OH)2D3 produced biologically active IL-6, but the amounts of IL-6 secreted into culture media did not appear to be enough to induce differentiation of M1 cells. Furthermore, simultaneous addition of anti-IL-6 antibody did not suppress the differentiation of M1 cells induced by D-factor or 1 alpha, 25(OH)2D3. These results show that IL-6 production is an essential property associated with the macrophage differentiation of M1 cells, but it may not be responsible for the D-factor- and 1 alpha, 25(OH)2D3-induced differentiation.  相似文献   

17.
18.
Cellular differentiation is a process in which the cells gain a more specialized shape, metabolism, and function. These cellular changes are accompanied by dynamic changes in gene expression programs. In most cases, DNA methylation, histone modification, and variant histones drive the epigenetic transition that reprograms the gene expression. Histone chaperones, HIRA and Asf1a, have a role for cellular differentiation by deposition of one of variant histones, H3.3, during myogenesis of murine C2C12 cells. In this study, we accessed the roles of histone chaperones and histone H3.3 in osteoblastic conversion of C2C12 myoblasts and compared their roles with those for myogenic differentiation. The unbiased analysis of the expression pattern of histone chaperones and variant histones proposed their uncommon contribution to each pathway. HIRA and Asf1a decreased to ~50% and further diminished during differentiation into osteoblasts, while they were maintained during differentiation into myotubes. HIRA, Asf1a, and H3.3 were indispensable for expression of cell type-specific genes during conversion into osteoblasts or myotubes. RNA interference analysis indicated that histone chaperones and H3.3 were required for early steps of osteoblastic differentiation. Our results suggest that histone chaperones and variant histones might be differentially required for the distinct phases of differentiation pathway.  相似文献   

19.
The c-myb proto-oncogene is abundantly expressed in tissues of hematopoietic origin, and changes in endogenous c-myb genes have been implicated in both human and murine hematopoietic tumors. c-myb encodes a DNA-binding protein capable of trans-activating the c-myc promoter. Suppression of both of these proto-oncogenes was shown to occur upon induction of terminal differentiation but not upon induction of growth inhibition in myeloid leukemia cells. Myeloblastic leukemia M1 cells that can be induced for terminal differentiation with the physiological hematopoietic inducers interleukin-6 and leukemia inhibitory factor were genetically manipulated to constitutively express a c-myb transgene. By using immediate-early to late genetic and morphological markers, it was shown that continuous expression of c-myb disrupts the genetic program of myeloid differentiation at a very early stage, which precedes the block previously shown to be exerted by deregulated c-myc, thereby indicating that the c-myb block is not mediated via deregulation of c-myc. Enforced c-myb expression also prevents the loss in leukemogenicity of M1 cells normally induced by interleukin-6 or leukemia inhibitory factor. Any changes which have taken place, including induction of myeloid differentiation primary response genes, eventually are reversed. Also, it was shown that suppression of c-myb, essential for terminal differentiation, is not intrinsic to growth inhibition. Taken together, these findings show that c-myb plays a key regulatory role in myeloid differentiation and substantiate the notion that deregulated expression of c-myb can play an important role in leukemogenicity.  相似文献   

20.
Neuroblastoma cell lines isolated from neuroblastoma tumors can be induced to differentiate into neuronal cell types by treatment with chemical agents, such as dimethyl sulfoxide and retinoic acid. The molecular mechanisms underlying this differentiation process, however, are completely obscure. In this paper, we show that neuronal differentiation of mouse N1E-115 neuroblastoma cells by dimethyl sulfoxide is accompanied by a prolonged rise in c-jun, junB, and junD expression and AP-1 activity. Multiple sequence elements in the Jun promoters are involved in this process. Furthermore, we show that c-jun and junD, but not junB, are expressed at high levels in the neuronal cell types obtained after dimethyl sulfoxide treatment. These results suggest an important role for c-jun and junD in neuronal differentiation of N1E-115 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号