首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The 96-amino acid Vpr protein is the major virion-associated accessory protein of the human immunodeficiency virus type 1 (HIV-1). As Vpr is not part of the p55 Gag polyprotein precursor (Pr55(gag)), its incorporation requires an anchor to associate with the assembling viral particles. Although the molecular mechanism is presently unclear, the C-terminal region of the Pr55(gag) corresponding to the p6 domain appears to constitute such an anchor essential for the incorporation of the Vpr protein. In order to clarify the mechanism by which the Vpr accessory protein is trans-incorporated into progeny virion particles, we tested whether HIV-1 Vpr interacted with the Pr55(gag) using the yeast two-hybrid system and the maltose-binding protein pull-down assay. The present study provides genetic and biochemical evidence indicating that the Pr55(gag) can physically interact with the Vpr protein. Furthermore, point mutations affecting the integrity of the conserved L-X-S-L-F-G motif of p6(gag) completely abolish the interaction between Vpr and the Pr55(gag) and, as a consequence, prevent Vpr virion incorporation. In contrast to other studies, mutations affecting the integrity of the NCp7 zinc fingers impaired neither Vpr virion incorporation nor the binding between Vpr and the Pr55(gag). Conversely, amino acid substitutions in Vpr demonstrate that an intact N-terminal alpha-helical structure is essential for the Vpr-Pr55(gag) interaction. Vpr and the Pr55(gag) demonstrate a strong interaction in vitro as salt concentrations as high as 900 mM could not disrupt the interaction. Finally, the interaction is efficiently competed using anti-Vpr sera. Together, these results strongly suggest that Vpr trans-incorporation into HIV-1 particles requires a direct interaction between its N-terminal region and the C-terminal region of p6(gag). The development of Pr55(gag)-Vpr interaction assays may allow the screening of molecules that can prevent the incorporation of the Vpr accessory protein into HIV-1 virions, and thus inhibit its early functions.  相似文献   

3.
Wyma DJ  Kotov A  Aiken C 《Journal of virology》2000,74(20):9381-9387
Assembly of infectious human immunodeficiency virus type 1 (HIV-1) virions requires incorporation of the viral envelope glycoproteins gp41 and gp120. Several lines of evidence have suggested that the cytoplasmic tail of the transmembrane glycoprotein, gp41, associates with Pr55(Gag) in infected cells to facilitate the incorporation of HIV-1 envelope proteins into budding virions. However, direct evidence for an interaction between gp41 and Pr55(Gag) in HIV-1 particles has not been reported. To determine whether gp41 is associated with Pr55(Gag) in HIV-1 particles, viral cores were isolated from immature HIV-1 virions by sedimentation through detergent. The cores contained a major fraction of the gp41 that was present on untreated virions. Association of gp41 with cores required the presence of the gp41 cytoplasmic tail. In HIV-1 particles containing a functional protease, a mutation that prevents cleavage of Pr55(Gag) at the matrix-capsid junction was sufficient for the detergent-resistant association of gp41 with the isolated cores. In addition to gp41, a major fraction of virion-associated gp120 was also detected on immature HIV-1 cores. Isolation of cores under conditions known to disrupt lipid rafts resulted in the removal of a raft-associated protein incorporated into virions but not the HIV-1 envelope proteins. These results provide biochemical evidence for a stable interaction between Pr55(Gag) and the cytoplasmic tail of gp41 in immature HIV-1 particles. Moreover, findings in this study suggest that the interaction of Pr55(Gag) with gp41 may regulate the function of the envelope proteins during HIV-1 maturation.  相似文献   

4.
A panel of 28 insertion mutants of the human immunodeficiency virus type 1 (HIV-1) Gag precursor (Pr55Gag) was constructed by linker-insertion mutagenesis and expressed in recombinant baculovirus-infected insect cells. One set of 14 mutants carried the normal N-myristylation signal; the other set constituted their non-N-myristylated counterparts. The mutants were characterized with respect to (i) assembly and extracellular release of membrane-enveloped budding Gag particles, (ii) intracellular assembly and nuclear transport of Gag cores, (iii) specific processing of Pr55Gag by HIV-1 protease in vivo, and (iv) binding of Pr55Gag to an HIV-1 genomic RNA probe in Northwestern blotting. Insertions within the region between amino acid residues 209 and 334 in the CA domain appeared to be the most detrimental to Gag particle assembly and release of Gag into the external medium, whereas a narrower window, between residues 209 and 241, was found to be critical for secretion of soluble Pr55Gag. Differences in Pr55Gag processing in vivo and RNA binding in vitro between N-myristylated and non-N-myristylated Gag mutants suggested a major conformational role for the myristylated N terminus of Gag precursor. In coinfection experiments using wild-type Gag- and mutant Gag-expressing recombinants, a transdominant negative effect on Gag particle assembly and release was observed for insertions located in two separate domains, the matrix and nucleocapsid.  相似文献   

5.
J Luban  C Lee    S P Goff 《Journal of virology》1993,67(6):3630-3634
We have expressed the human immunodeficiency virus type 1 (HIV-1) protease (PR) in bacteria as a Gag-PR polyprotein (J. Luban and S.P. Goff, J. Virol. 65:3203-3212, 1991). The protein displays enzymatic activity, cleaving the Gag polyprotein precursor Pr55gag to the expected products. The PR enzyme is only active as a dimer, and we hypothesized that PR activation might be used as an indicator of polyprotein multimerization. We constructed 25 linker insertion mutations throughout gag and assessed the PR activity of mutant Gag-PR polyproteins by the appearance of Gag cleavage products in bacterial lysates. All mutant constructs produced stable protein in bacteria. PR activity of the majority of the Gag-PR mutants was indistinguishable from that of the wild type. Six mutants, one with an insertion in the matrix (MA), four with insertions in the capsid (CA), and one with insertions in the nucleocapsid (NC), globally disrupted polyprotein processing. When PR was provided in trans on a separate plasmid, the Gag proteins were cleaved with wild-type efficiency. These results suggest that the gag mutations identified as disruptive of polyprotein processing did not conceal the scissile bonds of the polyprotein. Rather, the mutations prevented PR activation in the context of a Gag-PR polyprotein, perhaps by preventing polyprotein dimerization.  相似文献   

6.
Productive, spreading infection of peripheral blood lymphocytes (PBL) with human immunodeficiency virus type 1 (HIV-1) requires the viral protein Vif. To study the requirement for vif in this system, we infected PBL with a phenotypically complemented HIV-1 clone mutated in vif. Progeny virus was produced which was noninfectious in PBL but replicated in SupT1 cells. Analysis of metabolically labeled proteins of sedimentable extracellular particles made in PBL by radioimmunoprecipitation with either serum from a patient with AIDS or a monoclonal antibody reactive with HIV-1 Gag proteins revealed that vif-negative but not wild-type particles carry higher levels of p55, p41, and p38 Gag-specific proteins compared with those of p24. Similar results were obtained with sucrose-purified virions. Our data indicate that vif plays a role in Gag protein processing or in incorporation of processed Gag products into mature virions. The presence of unprocessed precursor Gag polyprotein (Pr55gag) and other Gag processing intermediates in PBL-derived vif-negative extracellular particles may contribute to the reduced infectivity of this virus.  相似文献   

7.
8.
J Luban  S P Goff 《Journal of virology》1994,68(6):3784-3793
We previously identified blocks of sequence near the 5' end of the human immunodeficiency virus (HIV-1) genome which conferred on RNA the ability to bind specifically to the HIV-1 Gag polyprotein, Pr55gag (J. Luban and S. P. Goff, J. Virol. 65:3203-3212, 1991; R. Berkowitz, J. Luban, and S. P. Goff, J. Virol. 67:7190-7200, 1993). Here we report the use of an RNase protection assay to quantify the effect of deletion of these sequences on RNA packaging into virions. First, we demonstrated with wild-type HIV-1 sequences that in comparison with spliced viral RNA, full-length viral genomic RNA is enriched 20-fold in virions. A previously described mutation with deletion of sequences between the major splice donor and the first codon of gag (A. Lever, H. Gottlinger, W. Haseltine, and J. Sodroski, J. Virol. 63:4085-4087, 1989) disrupted these ratios such that different HIV-1 RNA forms were packaged in direct proportion to cytoplasmic concentrations. The effect of deletion mutations preceding and within gag coding sequence on packaging was then tested in competition with RNAs containing wild-type packaging sequences. Using this system, we were able to demonstrate significant effects on packaging of RNAs with mutations immediately preceding the first codon of gag. The greatest reduction in packaging was seen with RNAs lacking the first 40 nucleotides of gag coding sequence, although sequences more 3' had slight additional effects.  相似文献   

9.
X Wu  J A Conway  J Kim    J C Kappes 《Journal of virology》1994,68(10):6161-6169
Viral protein X (Vpx) is a human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus accessory protein that is packaged into virions in molar amounts equivalent to Gag proteins. To delineate the processes of virus assembly that mediate Vpx packaging, we used a recombinant vaccinia virus-T7 RNA polymerase system to facilitate Gag protein expression, particle assembly, and extracellular release. HIV genes were placed under control of the bacteriophage T7 promoter and transfected into HeLa cells expressing T7 RNA polymerase. Western immunoblot analysis detected p55gag and its cleavage products p39 and p27 in purified particles derived by expression of gag and gag-pol, respectively. In trans expression of vpx with either HIV-2 gag or gag-pol gave rise to virus-like particles that contained Vpx in amounts similar to that detected in HIV-2 virus produced from productively infected T cells. Using C-terminal deletion and truncation mutants of HIV-2 Gag, we mapped the p15 coding sequence for determinants of Vpx packaging. This analysis revealed a region (residues 439 to 497) downstream of the nucleocapsid protein (NC) required for incorporation of Vpx into virions. HIV-1/HIV-2 gag chimeras were constructed to further characterize the requirements for incorporation of Vpx into virions. Chimeric HIV-1/HIV-2 Gag particles consisting of HIV-1 p17 and p24 fused in frame at the C terminus with HIV-2 p15 effectively incorporate Vpx, while chimeric HIV-2/HIV-1 Gag particles consisting of HIV-2 p17 and p27 fused in frame at the C terminus with HIV-1 p15 do not. Expression of a 68-amino-acid sequence of HIV-2 containing residues 439 to 497 fused to the coding regions of HIV-1 p17 and p24 also produced virus-like particles capable of packaging Vpx in amounts similar to that of full-length HIV-2 Gag. Sucrose gradient analysis confirmed particle association of Vpx and Gag proteins. These results demonstrate that the HIV-2 Gag precursor (p55) regulates incorporation of Vpx into virions and indicates that the packaging signal is located within residues 439 to 497.  相似文献   

10.
The bovine immunodeficiency virus (BIV) gag gene encodes a 53-kDa precursor (Pr53gag) that is involved in virus particle assembly and is further processed into the putative matrix (MA), capsid (CA), and nucleocapsid (NC) functional domains in the mature virus. Gag determinants are also found in the Gag-Pol polyprotein precursor. To immunologically identify the major precursors and processed products of the BIV gag gene, monospecific rabbit sera to recombinant BIV MA protein and Pr53gag and peptides predicted to correspond to the CA and NC proteins and the MA-CA cleavage site were developed and used in immunoprecipitations and immunoblots of BIV antigens. Monospecific antisera to native and recombinant human immunodeficiency virus type 1 proteins were also used to identify analogous BIV Gag proteins and to determine whether cross-reactive epitopes were present in the BIV Gag precursors or processed products. The BIV MA, CA, and NC Gag proteins were identified as p16, p26, and p13, respectively. In addition to BIV Pr53gag, the major Gag precursor, two other Gag-related precursors of 170 and 49 kDa were identified that have been designated pPr170gag-pol and Pr49gag, respectively; pPr170gag-pol is the Gag-Pol polyprotein precursor, and Pr49gag is the transframe Gag precursor present in pPr170gag-pol. Several alternative Gag cleavage products were also observed, including p23, which contains CA and NC determinants, and p10, which contains a peptide sequence conserved in the CA proteins of most lentiviruses. The monospecific antisera to human immunodeficiency virus type 1 CA (p24) and NC (p7) proteins showed cross-reactivity to and aided in the identification of analogous BIV proteins. Based on the present data, a scheme for the processing of BIV Gag precursors is proposed.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) particles consists of two molecules of genomic RNA as well as molecules originating from gag, pol, and env products, all synthesized as precursor proteins. The 96-amino-acid Vpr protein, the only virion-associated HIV-1 regulatory protein, is not part of the virus polyprotein precursors, and its incorporation into virus particles must occur by way of an interaction with a component normally found in virions. To investigate the mechanism of incorporation of Vpr into the HIV-1 virion, Vpr- proviral DNA constructs harboring mutations or deletions in specific virion-associated gene products were cotransfected with Vpr expressor plasmids in COS cells. Virus released from the transfected cells was tested for the presence of Vpr by immunoprecipitation with Vpr-specific antibodies. The results of these experiments show that Vpr is trans-incorporated into virions but at a lower efficiency than when Vpr is expressed from a proviral construct. The minimal viral genetic information necessary for Vpr incorporation was a deleted provirus encoding only the pr55gag polyprotein precursor. Incorporation of Vpr requires the expression but not the processing of gag products and is independent of pol and env expression. Direct interaction of Vpr with the Pr55gag precursor protein was demonstrated by coprecipitation experiments with gag product-specific antibodies. Overall, these results indicate that HIV-1 Vpr is incorporated into the nascent virion through an interaction with the Gag precursor polyprotein and demonstrate a novel mechanism by which viral protein can be incorporated into virus particles.  相似文献   

12.
13.
Vpr and Vpx proteins from human and simian immunodeficiency viruses (HIV and SIV) are incorporated into virions in quantities equivalent to those of the viral Gag proteins. We demonstrate here that Vpr and Vpx proteins from distinct lineages of primate lentiviruses were able to bind to their respective Gag precursors. The capacity of HIV type 1 (HIV-1) Vpr mutants to bind to Pr55Gag was correlated with their incorporation into virions. Molecular analysis of these interactions revealed that they required the C-terminal p6 domain of the Gag precursors. While the signal for HIV-1 Vpr binding lies in the leucine triplet repeat region of the p6 domain reported to be essential for incorporation, SIVsm Gag lacking the equivalent region still bound to SIVsm Vpr and Vpx, indicating that the determinants for Gag binding are located upstream of this region of the p6 domain. Binding to Gag cleavage products showed that HIV-1 Vpr interacted directly with the nucleocapsid protein (NC), whereas SIVsm Vpr and Vpx did not interact with NC but with the p6 protein. These results (i) reveal differences between HIV-1 and SIVsm for the p6 determinants required for Vpr and Vpx binding to Gag and (ii) suggest that HIV-1 Vpr and SIVsm Vpr and Vpx interact with distinct cleavage products of the precursor following proteolytic processing in the virions.  相似文献   

14.
The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a virion-associated regulatory protein. Mutagenesis has shown that the virion association of Vpr requires sequences near the C terminus of the HIV-1 Gag polyprotein Pr55gag. To investigate whether Vpr incorporation is mediated by a specific domain of Pr55gag, we examined the ability of chimeric HIV-1/Moloney murine leukemia virus (MLV) Gag polyproteins to direct the incorporation of Vpr. Vpr expressed in trans did not associate with particles formed by the authentic MLV Gag polyprotein or with particles formed by chimeric Gag polyproteins that had the matrix (MA) or capsid (CA) domain of MLV precisely replaced by the corresponding domain of HIV-1HXB2. By contrast, Vpr was efficiently incorporated upon replacement of the C-terminal nucleocapsid (NC) domain of the MLV Gag polyprotein with HIV-1 p15 sequences. Vpr was also efficiently incorporated into particles formed by a MLV Gag polyprotein that had the HIV-1 p6 domain fused to its C terminus. Furthermore, a deletion analysis revealed that a conserved region near the C terminus of the p6 domain is essential for Vpr incorporation, whereas sequences downstream of the conserved region are dispensable. These results show that a virion association motif for Vpr is located within residues 1 to 46 of p6.  相似文献   

15.
The human immunodeficiency virus type 1 gag gene product Pr55gag self-assembles when expressed on its own in a variety of eukaryotic systems. Assembly in T lymphocytes has not previously been studied, nor is it clear whether Pr55gag particles can package genomic RNA or if the Gag-Pol polyprotein is required. We have used a series of constructs that express Gag or Gag-Pol proteins with or without the viral protease in transient transfections in COS-1 cells and also expressed stably in CD4+ T cells to study this. Deletion of the p6 domain at the C terminus of protease-negative Pr55gag did not abolish particle release, while truncation of the nucleocapsid protein reduced it significantly, particularly in lymphocytes. Gag-Pol polyprotein was released from T cells in the absence of Pr55gag but did not encapsidate RNA. Pr55gag encapsidated human immunodeficiency virus type 1 RNA whether expressed in a protease-positive or protease-negative context. p6 was dispensable for RNA encapsidation. Marked differences in the level of RNA export were noted between the different cell lines.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses harbor short peptide motifs in Gag that promote the release of infectious virions. These motifs, known as late assembly (L) domains, recruit a cellular budding machinery that is required for the formation of multivesicular bodies (MVBs). The primary L domain of HIV-1 maps to a PTAP motif in the p6 region of Gag and engages the MVB pathway by binding to Tsg101. Additionally, HIV-1 p6 harbors an auxiliary L domain that binds to the V domain of ALIX, another component of the MVB pathway. We now show that ALIX also binds to the nucleocapsid (NC) domain of HIV-1 Gag and that ALIX and its isolated Bro1 domain can be specifically packaged into viral particles via NC. The interaction with ALIX depended on the zinc fingers of NC, which mediate the specific packaging of genomic viral RNA, but was not disrupted by nuclease treatment. We also observed that HIV-1 zinc finger mutants were defective for particle production and exhibited a similar defect in Gag processing as a PTAP deletion mutant. The effects of the zinc finger and PTAP mutations were not additive, suggesting a functional relationship between NC and p6. However, in contrast to the PTAP deletion mutant, the double mutants could not be rescued by overexpressing ALIX, further supporting the notion that NC plays a role in virus release.  相似文献   

17.
All retroviral nucleocapsid (NC) proteins, except those of spumaretroviruses, contain one or two copies of the conserved sequence motif C-X2-C-X4-H-X4-C. The conserved cysteine and histidine residues coordinate a zinc ion in each such motif. Rice et al. (W. G. Rice, J. G. Supko, L. Malspeis, R. W. Buckheit, Jr., D. Clanton, M. Bu, L. Graham, C. A. Schaeffer, J. A. Turpin, J. Domagala, R. Gogliotti, J. P. Bader, S. M. Halliday, L. Coren, R. C. Sowder II, L. 0. Arthur, and L. E. Henderson, Science 270:1194-1197, 1995) have described a series of compounds which inactivate human immunodeficiency virus type 1 (HIV-1) particles and oxidize the cysteine thiolates in the NC zinc finger. We have characterized the effects of three such compounds on Moloney murine leukemia virus (MuLV). We find that, as with HIV-1, the compounds inactivate cell-free MuLV particles and induce disulfide cross-linking of NC in these particles. The killed MuLV particles were found to be incapable of synthesizing full-length viral DNA upon infection of a new host cell. When MuLV particles are synthesized in the presence of one of these compounds, the normal maturational cleavage of the Gag polyprotein does not occur. The compounds have no effect on the infectivity of human foamy virus, a spumaretrovirus lacking zinc fingers in its NC protein. The resistance of foamy virus supports the hypothesis that the zinc fingers are the targets for inactivation of MuLV and HIV- I by the compounds. The absolute conservation of the zinc finger motif among oncoretroviruses and lentiviruses and the lethality of all known mutations altering the zinc-binding residues suggest that only the normal, wild-type structure can efficiently perform all of its functions. This possibility would make the zinc finger an ideal target for antiretroviral agents.  相似文献   

18.
The lentiviral Gag polyprotein (Pr55(Gag)) is cleaved by the viral protease during the late stages of the virus life cycle. Proteolytic cleavage of Pr55(Gag) is necessary for virion maturation, a structural rearrangement required for infectivity that occurs in budded virions. In this study, we investigate the relationship between phosphorylation of capsid (CA) domains in Pr55(Gag) and its cleavage intermediates and their cleavage by the viral protease in simian immunodeficiency virus (SIV). First, we demonstrate that phosphorylated forms of Pr55(Gag), several CA-containing cleavage intermediates of Pr55(Gag), and the free CA protein are detectable in SIV virions but not in virus-producing cells, indicating that phosphorylation of these CA-containing Gag proteins may require an environment that is unique to the virion. Second, we show that the CA domain of Pr55(Gag) can be phosphorylated in budded virus and that this phosphorylation does not require the presence of an active viral protease. Further, we provide evidence that CA domains (i.e., incompletely cleaved CA) are phosphorylated to a greater extent than free (completely cleaved) CA and that CA-containing Gag proteins can be cleaved by the viral protease in SIV virions. Finally, we demonstrate that Pr55(Gag) and several of its intermediates, but not free CA, are actively phosphorylated in budded virus. Taken together, these data indicate that, in SIV virions, phosphorylation of CA domains in Pr55(Gag) and several of its cleavage intermediates likely precedes the cleavage of these domains by the viral protease.  相似文献   

19.
We have examined structural interactions of Gag proteins in human immunodeficiency virus type 1 (HIV-1) particles by utilizing cysteine mutagenesis and cysteine-specific modifying reagents. In immature protease-minus but otherwise wild-type (wt) particles, precursor Pr55Gag proteins did not form intermolecular cystines naturally but could be cross-linked at cysteines, and cross-linking appeared to occur across nucleocapsid (NC) domains. Capsid (CA) proteins in wt mature viruses possess cysteines near their carboxy termini at gag codons 330 and 350, but these residues are not involved in natural covalent intermolecular bonds, nor can they be intermolecularly cross-linked by using the membrane-permeable cross-linker bis-maleimido hexane. The cysteine at gag codon 350 (C-350) is highly reactive to thiol-specific modifying reagents, while the one at codon 330 (C-330) appears considerably less reactive, even in the presence of ionic detergent. These results suggest that the HIV-1 CA C terminus forms an unusually stable conformation. Mutagenesis of C-350 to a serine residue in the mutant C350S (C-350 changed to serine) virtually eliminated particle assembly, attesting to the importance of this region. We also examined a C330S mutant, as well as mutants in which cysteines were created midway through the capsid domain or in the C-terminal section of the major homology region. All such mutants appeared wt on the basis of biochemical assays but showed greatly reduced infectivities, indicative of a postassembly, postprocessing replicative block. Interestingly, capsid proteins of mature major homology region mutant particles could be cysteine cross-linked, implying either that these mutations permit cross-linking of the native C-terminal CA cysteines or that major homology regions on neighbor capsid proteins are in close proximity in mature virions.  相似文献   

20.
J Luban  S P Goff 《Journal of virology》1991,65(6):3203-3212
We have expressed the human immunodeficiency virus type 1 (HIV-1) gag polyprotein (Pr55gag) in bacteria under the control of the T7 phage gene 10 promoter. When the gene encoding the viral protease is included in cis, in the -1 reading frame, the expected proteolytic cleavage products MA and CA are produced. Disruption of the protease-coding sequence prevents proteolytic processing, and full-length polyprotein is produced. Pr55gag, separated from bacterial proteins by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and immobilized on nitrocellulose membranes, binds RNA containing sequences from the 5' end of the HIV-1 genome. This binding is tolerant of a wide range of pH and temperature but has distinct salt preferences. Conditions were identified which prevented nonspecific binding of RNA to bacterial proteins but still allowed binding to Pr55gag. Under these conditions, irrelevant RNA probes lacking HIV-1 sequences bound Pr55gag less efficiently. Quantitation of binding to Pr55gag by HIV-1 RNA probes with deletions mutations demonstrated that there are two regions lying within the HIV-1 gag gene which independently promote binding of RNA to Pr55gag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号