首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Bleomycins are small glycopeptide cancer chemotherapeutics that give rise to 3'-modified DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, DSBs are predominantly repaired by RAD52-dependent homologous recombination (HR) with some support by Yku70/Yku80 (KU)-dependent pathways. The main DSB repair function of KU is believed to be as part of the non-homologous end-joining (NHEJ) pathway, but KU also functions in a "chromosome healing" pathway that seals DSBs by de novo telomere addition. We report here that rad52Deltayku70Delta double mutants are considerably more bleomycin hypersensitive than rad52Deltalig4Delta cells that lack the NHEJ-specific DNA ligase 4. Moreover, the telomere-specific KU mutation yku80-135i also dramatically increases rad52Delta bleomycin hypersensitivity, almost to the level of rad52Deltayku80Delta. The results indicate that telomere-specific functions of KU play a more prominent role in the repair of bleomycin-induced damage than its NHEJ functions, which could have important clinical implications for bleomycin-based combination chemotherapies.  相似文献   

2.
The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway.  相似文献   

3.
The moderately UV- and X-ray-sensitive mutant of Saccharomyces cerevisiae originally designated rs1 complements all rad and mms mutants available. Therefore, the new nomination rad24-1 according to the RAD nomenclature is suggested. RAD24 maps on chromosome V, close to RAD3 (1.3 cM). In order to associate the RAD24 gene with one of the three repair pathways, double mutants of rad24 and various representative genes of each pathway were constructed. The UV and X-ray sensitivities of the double mutants compared to the single mutants indicate that RAD24 is involved in excision repair of UV damage (RAD3 epistasis group), as well as in recombination repair of UV and X-ray damage (RAD52 epistasis group). Properties of the mutant are discussed which hint at the control of late steps in the pathways.  相似文献   

4.
Mutations in the REM1 gene of Saccharomyces cerevisiae confer a semidominant hyper-recombination and hypermutable phenotype upon mitotic cells ( GOLIN and ESPOSITO 1977). These effects have not been observed in meiosis. We have examined the interactions of rem1 mutations with rad6-1, rad50 -1, rad52-1 or spo11 -1 mutations in order to understand the basis of the rem1 hyper-rec phenotype. The rad mutations have pleiotropic phenotypes; spo11 is only defective in sporulation and meiosis. The RAD6, RAD50 and SPO11 genes are not required for spontaneous mitotic recombination; mutations in the RAD52 gene cause a general spontaneous mitotic Rec- phenotype. Mutations in RAD50 , RAD52 or SPO11 eliminate meiotic recombination, and mutations in RAD6 prevent spore formation. Evidence for the involvement of RAD6 in meiotic recombination is less clear. Mutations in all three RAD genes confer sensitivity to X rays; the RAD6 gene is also required for UV damage repair. To test whether any of these functions might be involved in the hyper-rec phenotype conferred by rem1 mutations, double mutants were constructed. Double mutants of rem1 spo11 were viable and demonstrated rem1 levels of mitotic recombination, suggesting that the normal meiotic recombination system is not involved in producing the rem1 phenotype. The rem1 rad6 double mutant was also viable and had rem1 levels of mitotic recombination. Neither rem1 rad50 nor rem1 rad52 double mutants were viable. This suggests that rem1 causes its hyper-rec phenotype because it creates lesions in the DNA that are repaired using a recombination-repair system involving RAD50 and RAD52.  相似文献   

5.
DNA double-strand breaks may be induced by endonucleases, ionizing radiation, chemical agents, and mechanical forces or by replication of single-stranded nicked chromosomes. Repair of double-strand breaks can occur by homologous recombination or by nonhomologous end joining. A system was developed to measure the efficiency of plasmid gap repair by homologous recombination using either chromosomal or plasmid templates. Gap repair was biased toward gene conversion events unassociated with crossing over using either donor sequence. The dependence of recombinational gap repair on genes belonging to the RAD52 epistasis group was tested in this system. RAD51, RAD52, RAD57, and RAD59 were required for efficient gap repair using either chromosomal or plasmid donors. No homologous recombination products were recovered from rad52 mutants, whereas a low level of repair occurred in the absence of RAD51, RAD57, or RAD59. These results suggest a minor pathway of strand invasion that is dependent on RAD52 but not on RAD51. The residual repair events in rad51 mutants were more frequently associated with crossing over than was observed in the wild-type strain, suggesting that the mechanisms for RAD51-dependent and RAD51-independent events are different. Plasmid gap repair was reduced synergistically in rad51 rad59 double mutants, indicating an important role for RAD59 in RAD51-independent repair.  相似文献   

6.
A broad spectrum of genetic damage results from exposure to hexavalent chromium. These lesions can result in DNA and RNA polymerase arrest, chromosomal aberrations, point mutations and deletions. Because of the complexity of Cr genotoxicity, the repair of Cr(VI)-induced DNA damage is poorly understood. Therefore, our aim was to investigate the sensitivities of DNA repair-deficient Saccharomyces cerevisiae strains to Cr(VI)-induced growth inhibition and lethality. Wild-type, translesion synthesis (rev3) and excision repair (apn1, ntg1, ntg2, rad1) mutants exhibited similar survival following Cr(VI) treatment (0-50mM) and underwent at least one population doubling within 2-4h post-treatment. The simultaneous loss of several excision repair genes (apn1 rad1 ntg1 ntg2) led to slower growth after Cr(VI) exposure (10mM) manifested as an initial delay in S phase progression. Higher concentrations of Cr(VI) (25mM) resulted in a prolonged transit through S phase in every strain tested. A G(2)/M arrest was evident within 1-2h after Cr(VI) treatment (10mM) in all strains and cells subsequently divided after this transient delay. In contrast to all other strains, only recombination-deficient (rad52, rad52 rev3) yeast were markedly hypersensitive towards Cr(VI) lethality. RAD52 mutant strains (rad52, rad52 rev3) also exhibited a significant delay (>6h) in the resumption of replication after Cr(VI) exposure which was related to the immediate and apparently terminal arrest of these yeast in G(2)/M after Cr(VI) treatment. These results, taken together with the recombinogenic effects of Cr(VI) in yeast containing a functional RAD52 gene, suggest that RAD52-mediated recombination is critical for the normal processing of lethal Cr-induced genetic lesions and exit from G(2) arrest. Furthermore, only the combined inactivation of multiple excision repair genes affects cell growth after Cr(VI) treatment.  相似文献   

7.
Possible functions of previously described genes RAD29 and RAD31 involved in DNA repair were determined by analyzing the interaction between these genes and mutations in the genes of the three basic epistatic groups: RAD3 (nucleotide excision repair), RAD6 (error-prone mutagenic repair system), RAD52 (recombination repair pathway), and also the apn1 mutation that blocks the synthesis of major AP endonuclease (base excision repair). The results obtained in these studies and the estimation of the capability for excision repair of lesions induced by 8-metoxipsoralen and subsequent exposure to long-wavelength UV light in mutants for these genes led to the assumption that the RAD29 and RAD31 genes are involved in yeast DNA repair control.  相似文献   

8.
The biological significance of DNA damage-induced gene expression in conferring resistance to DNA-damaging agents is unclear. We investigated the role of DUN1-mediated, DNA damage-inducible gene expression in conferring radiation resistance in Saccharomyces cerevisiae. The DUN1 gene was assigned to the RAD3 epistasis group by quantitating the radiation sensitivities of dun1, rad52, rad1, rad9, rad18 single and double mutants, and of the dun1 rad9 rad52 triple mutant. The dun1 and rad52 single mutants were similar in terms of UV sensitivities; however, the dun1 rad52 double mutant exhibited a synergistic decrease in UV resistance. Both spontaneous intrachromosomal and heteroallelic gene conversion events between two ade2 alleles were enhanced in dun1 mutants, compared to DUN1 strains, and elevated recombination was dependent on RAD52 but not RAD1 gene function. Spontaneous sister chromatid exchange (SCE), as monitored between truncated his3 fragments, was not enhanced in dun1 mutants, but UV-induced SCE and heteroallelic recombination were enhanced. Ionizing radiation and methyl methanesulfonate (MMS)-induced DNA damage did not exhibit greater recombinogenicity in the dun1 mutant compared to the DUN1 strain. We suggest that one function of DUN1-mediated DNA damage-induced gene expression is to channel the repair of UV damage into a nonrecombinogenic repair pathway.  相似文献   

9.
B. Liefshitz  A. Parket  R. Maya    M. Kupiec 《Genetics》1995,140(4):1199-1211
The presence of repeated sequences in the genome represents a potential source of karyotypic instability. Genetic control of recombination is thus important to preserve the integrity of the genome. To investigate the genetic control of recombination between repeated sequences, we have created a series of isogenic strains in which we could assess the role of genes involved in DNA repair in two types of recombination: direct repeat recombination and ectopic gene conversion. Naturally occurring (Ty elements) and artificially constructed repeats could be compared in the same cell population. We have found that direct repeat recombination and gene conversion have different genetic requirements. The role of the RAD51, RAD52, RAD54, RAD55, and RAD57 genes, which are involved in recombinational repair, was investigated. Based on the phenotypes of single and double mutants, these genes can be divided into three functional subgroups: one composed of RAD52, a second one composed of RAD51 and RAD54, and a third one that includes the RAD55 and RAD57 genes. Among seven genes involved in excision repair tested, only RAD1 and RAD10 played a role in the types of recombination studied. We did not detect a differential effect of any rad mutation on Ty elements as compared to artificially constructed repeats.  相似文献   

10.
11.
R. H. Schiestl  S. Prakash    L. Prakash 《Genetics》1990,124(4):817-831
rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, we have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6 delta) mutations and show that they also suppress the gamma-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of gamma-ray sensitivity. The six suppressor mutations we isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. We show that suppression of rad6 delta is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6 delta SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed.  相似文献   

12.
The RAD1 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of damaged DNA. In this paper, we report our observations on the effect of the RAD1 gene on genetic recombination. Mitotic intrachromosomal and interchromosomal recombination in RAD+, rad1, rad52, and other rad mutant strains was examined. The rad1 deletion mutation and some rad1 point mutations reduced the frequency of intrachromosomal recombination of a his3 duplication, in which one his3 allele is deleted at the 3' end while the other his3 allele is deleted at the 5' end. Mutations in the other excision repair genes, RAD2, RAD3, and RAD4, did not lower recombination frequencies in the his3 duplication. As expected, recombination between the his3 deletion alleles in the duplication was reduced in the rad52 mutant. The frequency of HIS3+ recombinants fell synergistically in the rad1 rad52 double mutant, indicating that the RAD1 and RAD52 genes affect this recombination via different pathways. In contrast to the effect of mutations in the RAD52 gene, mutations in the RAD1 gene did not lower intrachromosomal and interchromosomal recombination between heteroalleles that carry point mutations rather than partial deletions; however, the rad1 delta mutation did lower the frequency of integration of linear plasmids and DNA fragments into homologous genomic sequences. We suggest that RAD1 plays a role in recombination after the formation of the recombinogenic substrate.  相似文献   

13.
Specific ataxia telangiectasia and Rad3-related (ATR) mutations confer higher frequencies of homologous recombination. The genetic requirements for hyper-recombination in ATR mutants are unknown. MEC1, the essential yeast ATR/ATM homolog, controls S and G2 checkpoints and the DNA damage-inducibility of genes after radiation exposure. Since the mec1-D (null) mutant is defective in both S and G2 checkpoints, we measured spontaneous and DNA damage-associated sister chromatid exchange (SCE), homolog (heteroallelic) recombination, and homology-directed translocations in the mec1-21 hypomorphic mutant, which is defective in the S phase checkpoint but retains some G2 checkpoint function. We observed a sixfold, tenfold and 30-fold higher rate of spontaneous SCE, heteroallelic recombination, and translocations, respectively, in mec1-21 mutants compared to wild type. The mec1-21 hyper-recombination was partially reduced in rad9, pds1, and chk1 mutants, and abolished in rad52 mutants, suggesting the hyper-recombination results from RAD52-dependent recombination pathway(s) that require G2 checkpoint functions. The HU and UV sensitivities of mec1-21 rad9 and mec1-21 rad52 were synergistically increased, compared to the single mutants, indicating that mec1-21, rad52 and rad9 mutants are defective in independent pathways for HU and UV resistance. G2-arrested mec1-21 rad9 cells exhibit more UV resistance than non-synchronized cells, indicating that one function of RAD9 in conferring UV resistance in mec1-21 is by triggering G2 arrest. We suggest that checkpoint genes that function in the RAD9-mediated pathway are required for either homologous recombination or DNA damage resistance in the S phase checkpoint mutant mec1-21.  相似文献   

14.
We have determined the kinetics of up-regulation of the homologous recombination gene RAD51, one of the genes induced following DNA damage in isogenic haploid DNA repair-deficient mutants of Saccharomyces cerevisiae, using treatment with the DNA crosslinking agent 8-methoxypsoralen. We show that RAD51 is up-regulated concomitantly, although independently, with a shift from the G1 cell cycle phase to G2/M arrest. This up-regulation is absent in homologous recombination repair-deficient mutants and increased in mutants deficient in nucleotide excision repair and polζ-dependent translesion synthesis. We demonstrate that the Rad53-dependent DNA damage signal transduction cascade is active in RAD51 non-inducing mutants. However, when independently eliminated, it too abolishes RAD51 up-regulation. We present a model in which RAD51 up-regulation requires two signals: one depending on the Rad53-dependent DNA damage signal transduction cascade and the other on homologous recombination repair.  相似文献   

15.
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.  相似文献   

16.
Summary The rad6-1 and rad6-3 mutants are highly UV sensitive and show an increase in spontaneous and UV induced mitotic heteroallelic recombination in diploids. Both rad6 mutants are proficient in spontaneous and UV induced unequal sister chromatid recombination in the reiterated ribosomal DNA sequence and are deficient in UV induced mutagenesis. In contrast to the above effects where both mutants appear similar, rad6-1 mutants are deficient in sporulation and meiotic recombination whereas rad6-3 mutants are proficient. The differential effects of these mutations indicate that the RAD6 gene is multifunctional. The possible role of the RAD6 gene in error prone excision repair of UV damage during the G1 phase of the cell cycle in addition to its role in postreplication repair is discussed.  相似文献   

17.
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.  相似文献   

18.
Chromosomal repair was studied in stationary-phase Saccharomyces cerevisiae, including rad52/rad52 mutant strains deficient in repairing double-strand breaks (DSBs) by homologous recombination. Mutant strains suffered more chromosomal fragmentation than RAD52/RAD52 strains after treatments with cobalt-60 gamma irradiation or radiomimetic bleomycin, except after high bleomycin doses when chromosomes from rad52/rad52 strains contained fewer DSBs than chromosomes from RAD52/RAD52 strains. DNAs from both genotypes exhibited quick rejoining following gamma irradiation and sedimentation in isokinetic alkaline sucrose gradients, but only chromosomes from RAD52/RAD52 strains exhibited slower rejoining (10 min to 4 hr in growth medium). Chromosomal DSBs introduced by gamma irradiation and bleomycin were analyzed after pulsed-field gel electrophoresis. After equitoxic damage by both DNA-damaging agents, chromosomes in rad52/rad52 cells were reconstructed under nongrowth conditions [liquid holding (LH)]. Up to 100% of DSBs were eliminated and survival increased in RAD52/RAD52 and rad52/rad52 strains. After low doses, chromosomes were sometimes degraded and reconstructed during LH. Chromosomal reconstruction in rad52/rad52 strains was dose dependent after gamma irradiation, but greater after high, rather than low, bleomycin doses with or without LH. These results suggest that a threshold of DSBs is the requisite signal for DNA-damage-inducible repair, and that nonhomologous end-joining repair or another repair function is a dominant mechanism in S. cerevisiae when homologous recombination is impaired.  相似文献   

19.
G. T. Milne  T. Ho    D. T. Weaver 《Genetics》1995,139(3):1189-1199
RAD52 function is required for virtually all DNA double-strand break repair and recombination events in Saccharomyces cerevisiae. To gain greater insight into the mechanism of RAD52-mediated repair, we screened for genes that suppress partially active alleles of RAD52 when mutant or overexpressed. Described here is the isolation of a phenotypic null allele of SRS2 that suppressed multiple alleles of RAD52 (rad52B, rad52D, rad52-1 and KlRAD52) and RAD51 (KlRAD51) but failed to suppress either a rad52δ or a rad51δ. These results indicate that SRS2 antagonizes RAD51 and RAD52 function in recombinational repair. The mechanism of suppression of RAD52 alleles by srs2 is distinct from that which has been previously described for RAD51 overexpression, as both conditions were shown to act additively with respect to the rad52B allele. Furthermore, overexpression of either RAD52 or RAD51 enhanced the recombination-dependent sensitivity of an srs2δ RAD52 strain, suggesting that RAD52 and RAD51 positively influence recombinational repair mechanisms. Thus, RAD52-dependent recombinational repair is controlled both negatively and positively.  相似文献   

20.
We have previously shown that a checkpoint dependent on MEC1 and RAD53 slows the rate of S phase progression in Saccharomyces cerevisiae in response to alkylation damage. Whereas wild-type cells exhibit a slow S phase in response to damage, mec1-1 and rad53 mutants replicate rapidly in the presence or absence of DNA damage. In this report, we show that other genes (RAD9, RAD17, RAD24) involved in the DNA damage checkpoint pathway also play a role in regulating S phase in response to DNA damage. Furthermore, RAD9, RAD17, and RAD24 fall into two groups with respect to both sensitivity to alkylation and regulation of S phase. We also demonstrate that the more dramatic defect in S phase regulation in the mec1-1 and rad53 mutants is epistatic to a less severe defect seen in rad9Δ, rad17Δ, and rad24Δ. Furthermore, the triple rad9Δ rad17Δ rad24Δ mutant also has a less severe defect than mec1-1 or rad53 mutants. Finally, we demonstrate the specificity of this phenotype by showing that the DNA repair and/or checkpoint mutants mgt1Δ, mag1Δ, apn1Δ, rev3Δ, rad18Δ, rad16Δ, dun1-Δ100, sad4-1, tel1Δ, rad26Δ, rad51Δ, rad52-1, rad54Δ, rad14Δ, rad1Δ, pol30-46, pol30-52, mad3Δ, pds1Δ/esp2Δ, pms1Δ, mlh1Δ, and msh2Δ are all proficient at S phase regulation, even though some of these mutations confer sensitivity to alkylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号