首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ethylene signal transduction pathway in Arabidopsis   总被引:5,自引:0,他引:5  
The gaseous hormone ethylene is an important regulator of plantgrowth and development. Using a simple response of etiolatedseedlings to ethylene as a genetic screen, genes involved inethylene signal transduction have been identified in Arabidopsis.Analysis of two of these genes that have been cloned revealsthat ethylene signalling involves a combination of a protein(ETR1) with similarity to bacterial histidine kinases and aprotein (CTR1) with similarity to Raf-1, a protein kinase involvedin multiple signalling cascades in eukaryotic cells. Severallines of investigation provide compelling evidence that ETR1encodes an ethylene receptor. For the first time there is aglimpse of the molecular circuitry underlying the signal transductionpathway for a plant hormone. Key words: Ethylene, plant growth, plant development, regulation, signal transduction, Arabidopsis  相似文献   

2.
The plant hormone ethylene is involved in many developmental processes and responses to environmental stresses in plants. Although the elements of the signalling cascade and the receptors operating the ethylene pathway have been identified, a detailed understanding of the molecular processes related to signal perception and transfer is still lacking. Analysis of these processes using purified proteins in physical, structural and functional studies is complicated by the gaseous character of the plant hormone. In the present study, we show that cyanide, a π-acceptor compound and structural analogue of ethylene, is a suitable substitute for the plant hormone for in vitro studies with purified proteins. Recombinant ethylene receptor protein ETR1 (ethylene-resistant 1) showed high level and selective binding of [(14)C]cyanide in the presence of copper, a known cofactor in ethylene binding. Replacement of Cys(65) in the ethylene-binding domain by serine dramatically reduced binding of radiolabelled cyanide. In contrast with wild-type ETR1, autokinase activity of the receptor is not reduced in the ETR1-C65S mutant upon addition of cyanide. Additionally, protein-protein interaction with the ethylene signalling protein EIN2 (ethylene-insensitive 2) is considerably sustained by cyanide in wild-type ETR1, but is not affected in the mutant. Further evidence for the structural and functional equivalence of ethylene and cyanide is given by the fact that the ethylene-responsive antagonist silver, which is known to allow ligand binding but prevent intrinsic signal transduction, also allows specific binding of cyanide, but shows no effect on autokinase activity and ETR1-EIN2 interaction.  相似文献   

3.
4.
The gaseous hormone ethylene regulates many aspects of plant growth and development. Ethylene is perceived by a family of high-affinity receptors typified by the ETR1 protein from Arabidopsis. The ETR1 gene codes for a protein which contains a hydrophobic N-terminal domain that binds ethylene and a C-terminal domain that is related in sequence to histidine kinase-response regulator two-component signal transducers found in bacteria. A structural model for the ethylene-binding domain is presented in which a Cu(I) ion is coordinated within membrane-spanning alpha-helices of the hydrophobic domain. It is proposed that binding of ethylene to the transition metal would induce a conformational change in the sensor domain that would be propagated to the cytoplasmic transmitter domain of the protein. A total of four additional genes that are related in sequence to ETR1 have been identified in Arabidopsis. Specific missense mutations in any one of the five genes leads to ethylene insensitivity in planta. Models for signal transduction that can account for the genetic dominance of these mutations are discussed.  相似文献   

5.
6.
7.
拟南芥乙烯信号传递途径   总被引:4,自引:0,他引:4  
植物激素乙烯早在一百多年前就已经被确认,相关的研究使得乙烯广泛地被应用于农业上.一直到十年前第一个植物激素乙烯受体拟南芥ETR1基因被发现之后,人们对于乙烯信号传递的研究并才真正开始有所突破.以遗传学为基础对乙烯反应突变体所做的分析,使得乙烯信号传递已经成为目前植物信号传递领域中被研究得最清楚的信号传递途径之一.该文着重于回顾乙烯信号传递途径上各个元件的发现和确认,以及如何利用遗传学的方法将现有的突变体相关基因构建出目前广为接受的信号传递的遗传模式.最后,该文就目前所知的乙烯信号传递理论及相关研究,做了总结和深入的讨论.  相似文献   

8.
Zhao XC  Schaller GE 《FEBS letters》2004,562(1-3):189-192
In hormone perception, varying the concentrations of hormone, receptor, or downstream signaling elements can modulate signal transduction. Previous research has demonstrated that ethylene biosynthesis in plants is regulated by abiotic factors. Here we report that exposure of Arabidopsis plants to NaCl reduced expression of the ethylene receptor ETR1. The change in gene expression was reflected at the protein level based on immunoblot analysis. Further analysis supports a general effect of osmotic stress upon the expression level of ETR1. The reduction in ETR1 levels should cause increased sensitivity of the plant to ethylene. These results suggest that plant responses to abiotic stress are modulated by changes in the expression level of ethylene receptors.  相似文献   

9.
陈涛  张劲松 《植物学报》2006,23(5):519-530
乙烯是气体植物激素, 它在植物的生长发育过程中有很多作用。所以了解乙烯的生物合成及其信号转导是非常重要的。二十年来, 通过筛选有异于正常三重反应的突变体, 人们发现了乙烯信号转导的粗略轮廓。在拟南芥中, 有5个受体蛋白感受乙烯, ETR1、ERS1、ETR2、ERS2、EIN4。它们表现出功能冗余, 是乙烯信号的负调控因子, 在植物体内以二聚体的形式存在。ETR1的N端与乙烯结合时需要 铜离子(Ⅰ)的参与。尽管已经发现ETR1有组氨酸激酶活性, 而其它受体有丝氨酸/苏氨酸激酶活性, 但受体参与乙烯信号转导的机制还不是很清楚。受体与Raf类蛋白激酶CTR1相互作用, CTR1是乙烯反应的负调控因子。CTR1蛋白失活使EIN2蛋白活化。EIN2的N端是跨膜结构域, 与Nramp家族金属离子转运蛋白的跨膜结构域类似。EIN2的C端是一个新的未知结构域, 与乙烯信号途径的下游组分相互作用。EIN3位于EIN2的下游, EIN3和EILs诱导ERF1和其它转录因子的表达, 这些转录因子依次激活乙烯反应目的基因的表达, 表现出乙烯的反应。EIN3受到蛋白酶体介导的蛋白降解途径的调节。由于乙烯是一种多功能的植物激素, 其信号途径与其它信号途径有多重的交叉。  相似文献   

10.
Myo-Inositol-Dependent Sodium Uptake in Ice Plant   总被引:39,自引:0,他引:39  
The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development.  相似文献   

11.
The ethylene receptor ETR1 of Arabidopsis contains transmembrane domains responsible for ethylene binding and membrane localization. Sequence analysis does not provide information as to which membrane system of the plant cell ETR1 is localized. Examination by aqueous two-phase partitioning, sucrose density-gradient centrifugation, and immunoelectron microscopy indicates that ETR1 is predominantly localized to the endoplasmic reticulum. Localization of ETR1 showed no change following a cycloheximide chase. Ethylene binding by ETR1 did not affect localization to the endoplasmic reticulum, based upon analysis of plants treated with the ethylene precursor 1-aminocyclopropane- 1-carboxylic acid and by examination of a mutant receptor that does not bind ethylene. Determinants within the amino-terminal half of ETR1 are sufficient for targeting to and retention at the endoplasmic reticulum. These data support a central role of the plant endoplasmic reticulum in hormone perception and signal transduction.  相似文献   

12.
13.
Ethylene hormone receptor action in Arabidopsis.   总被引:12,自引:0,他引:12  
Small gaseous molecules play important roles in biological signaling in both animal and plant physiology. The hydrocarbon gas ethylene has long been known to regulate diverse aspects of plant growth and development, including fruit ripening, leaf senescence and flower abscission. Recent progress has been made toward identifying components involved in ethylene signal transduction in the plant Arabidopsis thaliana. Ethylene is perceived by five receptors that have similarity to two-component signaling proteins. The hydrophobic amino-terminus of the receptors binds ethylene, and mutations in this domain both prevent ethylene binding and confer ethylene insensitivity to the plant; the carboxyl-terminal portion of the receptors has similarity to bacterial his tidine protein kinases. Genetic data suggest a model in which ethylene binding inhibits receptor signaling, yet precisely how these receptors function is unclear. Two of the receptors have been found to associate with a negative regulator of ethylene responses called CTR1, which appears to be a mitogen-activated protein kinase (MAPK) kinase kinase.  相似文献   

14.
Ethylene and fruit ripening   总被引:13,自引:0,他引:13  
The latest advances in our understanding of the relationship between ethylene and fruit ripening are reviewed. Considerable progress has been made in the characterisation of genes encoding the key ethylene biosynthetic enzymes, ACC synthase (ACS) and ACC oxidase (ACO) and in the isolation of genes involved in the ethylene signal transduction pathway, particularly those encoding ethylene receptors ( ETR ). These have allowed the generation of transgenic fruit with reduced ethylene production and the identification of the Nr tomato ripening mutant as an ethylene receptor mutant. Through these tools, a clearer picture of the role of ethylene in fruit ripening is now emerging. In climacteric fruit, the transition to autocatalytic ethylene production appears to result from a series of events where developmentally regulated ACO and ACS gene expression initiates a rise in ethylene production, setting in motion the activation of autocatalytic ethylene production. Differential expression of ACS and ACO gene family members is probably involved in such a transition. Finally, we discuss evidence suggesting that the NR ethylene perception and transduction pathway is specific to a defined set of genes expressed in ripening climacteric fruit and that a distinct ETR pathway regulates other ethylene-regulated genes in both immature and ripening climacteric fruit as well as in non-climacteric fruit. The emerging picture is one where both ethylene-dependent and -independent pathways coexist in both climacteric and non-climacteric fruits. Further work is needed in order to dissect the molecular events involved in individual ripening processes and to understand the regulation of the expression of both ethylene-dependent and -independent genes.  相似文献   

15.
The response of Arabidopsis thaliana etiolated seedlings to the plant hormone ethylene is a conspicuous phenotype known as the triple response. We have identified genes that are required for ethylene perception and response by isolating mutants that fail to display a triple response in the presence of exogenous ethylene. Five new complementation groups have been identified. Four of these loci, designated ein4, ein5, ein6 and ein7, are insensitive to ethylene. The fifth complementation group, eir1, is defined by a novel class of mutants that have agravitropic and ethylene-insensitive roots. Double-mutant phenotypes have allowed the positioning of these loci in a genetic pathway for ethylene signal transduction. The ethylene-response pathway is defined by the following loci: ETR1, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, EIN7, EIR1, AUX1 and HLS1. ctr1-1 is epistatic to etr1-3 and ein4, indicating that CTR1 acts after both ETR1 and EIN4 in the ethylene-response pathway. Mutations at the EIN2, EIN3, EIN5, EIN6 and EIN7 loci are all epistatic to the ctr1 seedling phenotype. The EIR1 and AUX1 loci define a root-specific ethylene response that does not require EIN3 or EIN5 gene activity. HLS1 appears to be required for differential cell growth in the apical hook. The EIR1, AUX1 and HLS1 genes may function in the interactions between ethylene and other plant hormones that occur late in the signaling pathway of this simple gas.  相似文献   

16.
Genetic screens have been extremely useful in identifying genes involved in hormone signal transduction. However, although these screens were originally designed to identify specific components involved in early hormone signalling, mutations in these genes often confer changes in sensitivity to more than one hormone at the whole-plant level. Moreover, a variety of hormone response genes has been identified through screens that were originally designed to uncover regulators of sugar metabolism. Together, these facts indicate that the linear representation of the hormone signalling pathways controlling a specific aspect of plant growth and development is not sufficient, and that hormones interact with each other and with a variety of developmental and metabolic signals. Following the advent of arabidopsis molecular genetics we are beginning to understand some of the mechanisms by which a hormone is transduced into a cellular response. In this Botanical Briefing we review a subset of genes in arabidopsis that influence hormonal cross-talk, with emphasis on the gibberellin, abscisic acid and ethylene pathways. In some cases it appears that modulation of hormone sensitivity can cause changes in the synthesis of an unrelated hormone, while in other cases a hormone response gene defines a node of interaction between two response pathways. It also appears that a variety of hormones may converge to regulate the turnover of important regulators involved in growth and development. Examples are cited of the recent use of suppressor and enhancer analysis to identify new nodes of interaction between these pathways.  相似文献   

17.
A MAPK pathway mediates ethylene signaling in plants   总被引:26,自引:0,他引:26       下载免费PDF全文
Ethylene signal transduction involves ETR1, a two-component histidine protein kinase receptor. ETR1 functions upstream of the negative regulator CTR1. The similarity of CTR1 to members of the Raf family of mitogen-activated protein kinase kinase kinases (MAPKKKs) suggested that ethylene signaling in plants involves a MAPK pathway, but no direct evidence for this has been provided. Here we show that distinct MAPKs are activated by the ethylene precursor aminocyclopropane-1-carboxylic acid (ACC) in Medicago and ARABIDOPSIS: In Medicago, the ACC-activated MAPKs were SIMK and MMK3, while in Arabidopsis MPK6 and another MAPK were identified. Medicago SIMKK specifically mediated ACC-induced activation of SIMK and MMK3. Transgenic Arabidopsis plants overexpressing SIMKK have constitutive MPK6 activation and ethylene-induced target gene expression. SIMKK overexpressor lines resemble ctr1 mutants in showing a triple response phenotype in the absence of ACC. Whereas MPK6 was not activated by ACC in etr1 mutants, ein2 and ein3 mutants showed normal activation profiles. In contrast, ctr1 mutants showed constitutive activation of MPK6. These data indicate that a MAPK cascade is part of the ethylene signal transduction pathway in plants.  相似文献   

18.
The plant hormone ethylene regulates many aspects of growth, development and responses to the environment. The Arabidopsis ETHYLENE INSENSITIVE3 (EIN3) protein is a nuclear-localized component of the ethylene signal-transduction pathway with DNA-binding activity. Loss-of-function mutations in this protein result in ethylene insensitivity in Arabidopsis. To gain a better understanding of the ethylene signal-transduction pathway in tomato, we have identified three homologs of the Arabidopsis EIN3 gene (LeEILs). Each of these genes complemented the ein3-1 mutation in transgenic Arabidopsis, indicating that all are involved in ethylene signal transduction. Transgenic tomato plants with reduced expression of a single LeEIL gene did not exhibit significant changes in ethylene response; reduced expression of multiple tomato LeEIL genes was necessary to reduce ethylene sensitivity significantly. Reduced LeEIL expression affected all ethylene responses examined, including leaf epinasty, flower abscission, flower senescence and fruit ripening. Our results indicate that the LeEILs are functionally redundant and positive regulators of multiple ethylene responses throughout plant development.  相似文献   

19.
Arabidopsis AtCTR1 is a Raf-like protein kinase that interacts with ETR1 and ERS and negatively regulates ethylene responses. In tomato, several CTR1-like proteins could perform this role. We have characterized LeCTR2, which has similarity to AtCTR1 and also to EDR1, a CTR1-like Arabidopsis protein involved in defence and stress responses. Protein–protein interactions between LeCTR2 and six tomato ethylene receptors indicated that LeCTR2 interacts preferentially with the subfamily I ETR1-type ethylene receptors LeETR1 and LeETR2, but not the NR receptor or the subfamily II receptors LeETR4, LeETR5 and LeETR6. The C-terminus of LeCTR2 possesses serine/threonine kinase activity and is capable of auto-phosphorylation and phosphorylation of myelin basic protein in vitro . Overexpression of the LeCTR2 N-terminus in tomato resulted in altered growth habit, including reduced stature, loss of apical dominance, highly branched inflorescences and fruit trusses, indeterminate shoots in place of determinate flowers, and prolific adventitious shoot development from the rachis or rachillae of the leaves. Expression of the ethylene-responsive genes E4 and chitinase B was upregulated in transgenic plants, but ethylene production and the level of mRNA for the ethylene biosynthetic gene ACO1 was unaffected. The leaves and fruit of transgenic plants also displayed enhanced susceptibility to infection by the fungal pathogen Botrytis cinerea , which was associated with much stronger induction of pathogenesis-related genes such as PR1b1 and chitinase B compared with the wild-type. The results suggest that LeCTR2 plays a role in ethylene signalling, development and defence, probably through its interactions with the ETR1-type ethylene receptors of subfamily I.  相似文献   

20.
安丰英  郭红卫 《植物学报》2006,23(5):531-542
气态植物激素乙烯在植物生长发育和应对生物及非生物胁迫过程中起着重要作用。在过去的十几年中, 对模式植物拟南芥的分子遗传研究已建立从信号感知到转录调控的乙烯信号转导线性模型。拟南芥共有5个乙烯受体ETR1、ERS1、ETR2、ERS2和EIN4, 目前已知ETR1定位在内质网上, 与类似于Raf的蛋白激酶CTR1协同负调控乙烯反应。EIN2和EIN3/EILs位于CTR1下游, 正调控乙烯反应。两个F-box蛋白EBF1和EBF2通过泛素/26S蛋白体降解途径调控EIN3的稳定性。5’→3’的外切核酸酶EIN5通过启动EBF1和EBF2 mRNA的降解, 拮抗EBF1和EBF2对EIN3的负反馈调控。目前对于乙烯信号转导途径关键组分的生化功能和乙烯下游反应途径的了解甚少, 乙烯信号转导途径与其它途径之间还存在着广泛的交叉反应, 这些问题的解决将大大增加我们对乙烯信号转导途径的了解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号