首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been well known for decades that deoxyribonucleic acid (DNA) polymerases with proofreading function have a higher fidelity in primer extension as compared to those without 3′ exonuclease activities. However, polymerases with proofreading function have not been used in single nucleotide polymorphism (SNP) assays. Here, we describe a new method for single-base discrimination by proofreading the 3′ phosphorothioate-modified primers using a polymerase with proofreading function. Our data show that the combination of a polymerase with 3′ exonuclease activity and the 3′ phosphorothioate-modified primers work efficiently as a single-base mismatch-operated on/off switch. DNA polymerization only occurred from matched primers, whereas mismatched primers were not extended at the broad range of annealing temperature tested in our study. This novel single-base discrimination method has potential in SNP assays.  相似文献   

2.
The role of 3' exonuclease excision in DNA polymerization was evaluated for primer extension using inert allele specific primers with exonuclease-digestible ddNMP at their 3' termini. Efficient primer extension was observed in amplicons where the inert allele specific primers and their corresponding templates were mismatched. However, no primer-extended products were yielded by matched amplicons with inert primers. As a control, polymerase without proofreading activity failed to yield primer-extended products from inert primers regardless of whether the primers and templates were matched or mismatched. These data indicated that activation was undertaken for the inert allele specific primers through mismatch proofreading. Complementary to our previously developed SNP-operated on/off switch, in which DNA polymerization only occurs in matched amplicon, this new mutation detection assay mediated by exo(+) DNA polymerases has immediate applications in SNP analysis independently or in combination of the two assays.  相似文献   

3.
It has been well known for decades that deoxyribonucleic acid (DNA) polymerases with proofreading function have a higher fidelity in primer extension as compared to those without 3' exonuclease activities. However, polymerases with proofreading function have not been used in single nucleotide polymorphism (SNP) assays. Here, we describe a new method for single-base discrimination by proofreading the 3' phosphorothioate-modified primers using a polymerase with proofreading function. Our data show that the combination of a polymerase with 3' exonuclease activity and the 3' phosphorothioate-modified primers work efficiently as a single-base mismatch-operated on/off switch. DNA polymerization only occurred from matched primers, whereas mismatched primers were not extended at the broad range of annealing temperature tested in our study. This novel single-base discrimination method has potential in SNP assays.  相似文献   

4.
DNA templates harboring specific single nucleotide polymorphism (SNP) sites are largely needed as positive controls in practical SNP analysis and in determination of the reliability of newly developed methods in high-throughput screening assays. Here we report a one-step method to produce SNP templates by amplifying a wild-type sequence with primers having single nucleotide mismatches at or near their 3′ ends. A short amplicon harboring an EcoRI site was used to evaluate the feasibility of our strategy. Perfectly matched primers and primers with a single base mismatch occurring from the first base to the sixth base of the EcoRI site were used for primer extension. By using polymerase without a proofreading function, we kept mismatched nucleotides from occurring in extended primer products, as confirmed by EcoRI digestion and sequencing analysis. The strategy of using primers with a single mismatched base and exo- polymerase was shown to be an efficient one-step method for preparing SNP templates, either for application in the development of SNP screening assays or as positive controls in practical SNP assays.  相似文献   

5.
DNA polymerases without the 3' exonuclease function (exo(-) pol) have been widely used in sequencing and SNP genotyping. As a major player that expedited the coming of the postgenomic era, exo(-) polymerases worked remarkably well in the Human Genome Sequencing Project. However, it has become a challenge for this class of polymerases to efficiently screen the large number of SNPs that are found in the human genome. For more than three decades it has been recognized that polymerase fidelity varied according to the presence of proofreading activity that is mediated by its internal 3' exonuclease. Polymerases with proofreading function are famous for their high fidelity in DNA replication both in vivo and in vitro, but this well-known class of polymerases has been almost completely neglected in genetic analysis in the postgenomic era. We speculate that exo(+) polymerases may exhibit higher nucleotide identification ability when compared to exo- polymerases for an in vitro genetic analysis. With the application of exo(+) polymerases in SNP assays, a novel mechanism for the maintenance of DNA replication, the on/off switch, was discovered. Two new SNP assays have been developed to carry out genome-wide genotyping, taking advantage of the enzymatic properties of exo(+) polymerases. Furthermore, the on/off switch mechanism embodies a powerful nucleotide identification ability, which can be used to discriminate the bases that are upstream of the 3' terminus, and thus defines a new concept in de novo sequencing technology. Application of exo(+) polymerases to genetic analysis, and especially SNP assays, will greatly accelerate the pace to personalized medicine.  相似文献   

6.
Mis-priming associated with uncharacterised single nucleotide polymorphisms (SNPs) may lead to failure of PCR for genotyping. This is particularly troublesome in high-throughput SNP genotyping applications relying on multiplex PCR (2–40-plex) generating many short amplicons (80–120 bp) of similar size, an approach best suited for whole genome scans. However, if the target SNPs are clustered within a few target genes one option to ameliorate this is to increase the amplicon length, effectively reducing the potential for primer/template interactions and mis-priming. We tested this approach in a diverse population of 372 Eucalyptus pilularis individuals (π = 8.11 × 10−3, H e = 0.75) using a modified Sequenom iPLEX gold assay. Four candidate genes (MYB1, MYB2, CAD and CCR) were amplified in a single long range multiplex capture PCR generating 6 long amplicons ranging in size from 907 to 2,225 bp. This contrasts with the standard approach which would have required the amplification of 98 short amplicons in 4 multiplex reactions. These 6 long amplicons provided the assay template for 98 assays (87 SNP and 11 InDel) within the 4 candidate genes. Reaction results indicated that longer amplicons could provide a suitable template for genotyping assays, with 90.8% of assays functional and 84.3% of assays suitable for downstream analysis. Additional advantages of this approach were the capacity for troubleshooting using gel electrophoresis and savings of 94% in capture primer synthesis costs. This approach will have the greatest relevance for candidate gene approaches for association testing in uncharacterised populations of organisms with high sequence diversity.  相似文献   

7.
DNA polymorphism of the cellular lines of wheat resistant to the culture filtrate of G. graminis var. tritici and the plant-regenerants that were induced from them has been studied with the use of the method of ISSR-analysis. Specific changes in DNA sequences were detected in resistant calluses. It was found that all resistant cell lines were different from the initial callus and from the callus, which was not exposed to the selective factor. This difference was based on the presence of the specific 2347 bp (5′-TCTCTCTCTCTCTCTCG-3′ primer) and 1745 bp (5′-AGAGAGAGAGAGAGAGTC-3′ primer) amplicons and on the absence of the 1108 bp amplicon (5′-ACACACACACACACACC-3′ primer). These changes were also found in the plant-regenerants and in the R1 plants.  相似文献   

8.
Detection of DNA sequence variation is critical to biomedical applications, including disease genetic identification, diagnosis and treatment, drug discovery and forensic analysis. Here, we describe an arrayed primer extension-based genotyping method (APEX-2) that allows multiplex (640-plex) DNA amplification and detection of single nucleotide polymorphisms (SNPs) and mutations on microarrays via four-color single-base primer extension. The founding principle of APEX-2 multiplex PCR requires two oligonucleotides per SNP/mutation to generate amplicons containing the position of interest. The same oligonucleotides are then subsequently used as immobilized single-base extension primers on a microarray. The method described here is ideal for SNP or mutation detection analysis, molecular diagnostics and forensic analysis. This robust genetic test has minimal requirements: two primers, two spots on the microarray and a low cost four-color detection system for the targeted site; and provides an advantageous alternative to high-density platforms and low-density detection systems.  相似文献   

9.
The wide development of single nucleotide polymorphism (SNP) markers also in non-model species increases the need for inexpensive methods that do not require sophisticated equipment and time for optimization. This work presents a new method for polymerase chain reaction (PCR) amplification of multiple specific alleles (PAMSA), which allows efficient discrimination of SNP polymorphisms in one reaction tube with standard PCR conditions. This improved PAMSA requires only three unlabeled primers: a common reverse primer and two allele-specific primers having a tail of different length to differentiate the two SNP alleles by the size of amplification products on agarose gel. A destabilizing mismatch within the five bases of the 3′ end is also added to improve the allele specificity. To validate the accuracy of this method, 94 full-sib individuals were genotyped with three SNPs and compared to the genotypes obtained by cleaved amplified polymorphic sequence (CAPS) or derived CAPS. This method is flexible, inexpensive, and well suited for high throughput and automated genotyping.  相似文献   

10.
DNA聚合酶高保真机理的新发现及其在SNP分析中的应用   总被引:3,自引:0,他引:3  
高保真DNA聚合酶在遗传与进化等生命活动中具有十分重要的生理与病理意义。高保真聚合酶除具有广为人知的校正功能外,最近的实验进一步表明, 由不能及时校正或难于纠正的错配碱基引发的“关”闭DNA聚合反应的效应, 同样保证了DNA聚合反应终产物的纯度。高保真聚合酶这一“关”闭DNA聚合反应的能力, 促成了其与耐外切酶消化的3´末端碱基特异性引物共同构成一个SNP敏感性纳米级复合分子“开/关”,高保真聚合酶分子中相距三纳米的聚合中心和3´→5´外切酶酶解中心则既合作又独立地起到了复合分子开关中“开”和“关”的效能:对于配对的引物,则直接在该酶的聚合中心进行聚合反应,即“开”的效应;而对于3´末端错配的引物,则从该酶的聚合中心转移至3´→5´外切酶的酶解中心,由于引物修饰了的3´末端耐外切酶的特点,继而出现了一种长时间无酶解产物的酶解过程,最后因酶的聚合中心空转而“关”闭DNA聚合反应,即“关”的效应。这一新的复合分子“开/关”在很大程度上满足了后基因时代对SNP分析的要求。该SNP分子开关的应用, 使基因诊断提高到单碱基水平。同时, 利用该方法通过SNP对基因组扫描, 在单基因遗传病病因研究及法医学鉴定上具有很强的理论和实用价值。  相似文献   

11.
Single nucleotide polymorphisms (SNPs) are now widely used for many DNA analysis applications such as linkage disequilibrium mapping, pharmacogenomics and traceability. Many methods for SNP genotyping exist with diverse strategies for allele-distinction. Mass spectrometers are used most commonly in conjunction with primer extension procedures with allele-specific termination. Here we present a novel concept for allele-preparation for SNP genotyping. Primer extension is carried out with an extension primer positioned immediately upstream of the SNP that is to be genotyped, a complete set of four ribonucleotides and a ribonucleotide incorporating DNA polymerase. The allele-extension products are then treated with alkali, which results in the cleavage immediately after the first added ribonucleotide. In addition, to obtain fragments easily detectable by mass spectrometry, we have included a ribonucleotide in the primer usually at the fourth nucleotide from the 3′ terminus. The method was tested on four SNPs each with a different combination of nucleotides. The advantage over other mass spectrometry-based SNP genotyping assays is that this one only requires a PCR, a primer extension reaction with a universal extension mix and an inexpensive facile cleavage reaction, which makes it overall very cost effective and easy in handling.  相似文献   

12.
Four Waxy haplotypes, previously identified as each having a different combination of three single nucleotide polymorphisms (SNPs) in the Waxy gene, were highly correlated with apparent amylose content and pasting properties, which are important grain quality traits for predicting cooked rice (Oryza sativa L.) texture and processing properties (Chen et al. in J Cereal Sci 47:536–545, 2008a; Chen et al. in J Cereal Sci 48:781–788, 2008b). Three allele-specific PCR markers were developed to genotype the three aforementioned functional SNPs in a single PCR amplification. Each marker contained two allele-specific primers and one common primer. For each marker, the two allele-specific primers differed by one base at the 3′-end to provide discrimination of SNP alleles, and were labeled with unique fluorescence probes. An additional mismatched base, the third base from the 3′-end, was inserted in some allele-specific primers to increase selectivity. The amplification step of the PCR thermal cycling program was initially set for 20× touch-down cycles with the annealing temperature of the first cycle approximately 6°C above the thermal melting temperature of all three primers at a touch-down rate of −0.3°C per cycle, and followed by 25× regular thermal cycles with the annealing temperature at their thermal melting temperature. The allelic genotypes for each SNP were distinguished from each other by both their differential primer-allele fluorescences and their amplification product lengths. The simplicity of these assays makes it easy to utilize these markers as part of a marker-assisted selection strategy in rice breeding programs selecting for these important grain quality traits.  相似文献   

13.
Single-nucleotide polymorphism (SNP) genotyping is widely used in genetic association studies to characterize genetic factors underlying inherited traits. Despite many recent advances in high-throughput SNP genotyping, inexpensive and flexible methods with reasonable throughput levels are still needed. Real-time PCR methods for discovering and genotyping SNPs are becoming increasingly important in various fields of biology. In this study, we introduce a new, single-tube strategy that combines the tetra-primer ARMS PCR assay, SYBR Green I-based real-time PCR, and melting-point analysis with primer design strategies to detect the SNP of interest. This assay, T-Plex real-time PCR, is based on the Tm discrimination of the amplified allele-specific amplicons in a single tube. The specificity, sensitivity, and robustness of the assay were evaluated for common mutations in the FV, PII, MTHFR, and FGFR3 genes. We believe that T-Plex real-time PCR would be a useful alternative for either individual genotyping requests or large epidemiological studies.  相似文献   

14.
Influence of stereochemistry of the 3′-terminal phosphorothioate (PS)-modified primers was studied in a single base extension (SBE) assay to evaluate any improvements in specificity. SBE reactions were catalyzed by members of the high fidelity Pfu family of DNA polymerases with (exo+) or without (exo−) 3′ → 5′ exonucleolytic activity. The diastereomerically pure PS-labeled primers used in these studies were obtained either by the stereospecific chemical synthesis invented in our laboratory or by the more conventional ion-exchange chromatographic method for separation of a mixture of diastereomers (RP and SP). When the SBE reaction was performed in the presence of mispaired 2′-deoxyribonucleoside triphosphates (dNTPs), the “racemic” 3′-phosphorothioate primer mixture resulted in a lower level of 3′ → 5′ exonuclease-mediated cleavage products in comparison to the SBE reactions carried out with the corresponding unmodified primer. When the diastereomerically pure RP 3′-phosphorothioate primer was examined, the results were largely the same as for the racemic 3′-phosphorothioate primer mixture. In contrast, a 3′-PS primer of SP configuration displayed significantly improved performance in the SBE reaction. This included the lack of 3′ → 5′ proofreading products, less mispriming, and improved yield of incorporation of the correct nucleotide.  相似文献   

15.
A new approach to SNP genotyping with fluorescently labeled mononucleotides   总被引:4,自引:1,他引:3  
Fluorescence resonance energy transfer (FRET) is one of the most powerful and promising tools for single nucleotide polymorphism (SNP) genotyping. However, the present methods using FRET require expensive reagents such as fluorescently labeled oligonucleotides. Here, we describe a novel and cost-effective method for SNP genotyping using FRET. The technique is based on allele-specific primer extension using mononucleotides labeled with a green dye and a red dye. When the target DNA contains the sequence complementary to the primer, extension of the primer incorporates the green and red dye-labeled nucleotides into the strand, and red fluorescence is emitted by FRET. In contrast, when the 3′ end nucleotide of the primer is not complementary to the target DNA, there is no extension of the primer, or FRET signal. Therefore, discrimination among genotypes is achieved by measuring the intensity of red fluorescence after the extension reaction. We have validated this method with 11 SNPs, which were successfully determined by end-point measurements of fluorescence intensity. The new strategy is simple and cost-effective, because all steps of the preparation consist of simple additions of solutions and incubation, and the dye-labeled mononucleotides are applicable to all SNP analyses. This method will be suitable for large-scale genotyping.  相似文献   

16.

Background  

Single nucleotide polymorphisms (SNPs) are DNA sequence variations, occurring when a single nucleotide – adenine (A), thymine (T), cytosine (C) or guanine (G) – is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX). This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart) is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias.  相似文献   

17.
Discovering single nucleotide polymorphisms (SNPs) in specific genes in a heterozygous polyploid plant species, such as sugarcane, is challenging because of the presence of a large number of homologues. To discover SNPs for mapping genes of interest, 454 sequencing of 307 polymerase chain reaction (PCR) amplicons (> 59 kb of sequence) was undertaken. One region of a four-gasket sequencing run, on a 454 Genome Sequencer FLX, was used for pooled PCR products amplified from each parent of a quantitative trait locus (QTL) mapping population (IJ76-514 × Q165). The sequencing yielded 96 755 (IJ76-514) and 86 241 (Q165) sequences with perfect matches to a PCR primer used in amplification, with an average sequence depth of approximately 300 and an average read length of 220 bases. Further analysis was carried out on amplicons whose sequences clustered into a single contig using an identity of 80% with the program cap 3. In the more polymorphic sugarcane parent (Q165), 94% of amplicons (227/242) had evidence of a reliable SNP – an average of one every 35 bases. Significantly fewer SNPs were found in the pure Saccharum officinarum parent – with one SNP every 58 bases and SNPs in 86% (213/247) of amplicons. Using automatic SNP detection, 1632 SNPs were detected in Q165 sequences and 1013 in IJ76-514. From 225 candidate SNP sites tested, 209 (93%) were validated as polymorphic using the Sequenom MassARRAY system. Amplicon re-sequencing using the 454 system enables cost-effective SNP discovery that can be targeted to genes of interest and is able to perform in the highly challenging area of polyploid genomes.  相似文献   

18.
We have developed a locus-specific DNA target preparation method for highly multiplexed single nucleotide polymorphism (SNP) genotyping called MARA (Multiplexed Anchored Runoff Amplification). The approach uses a single primer per SNP in conjunction with restriction enzyme digested, adapter-ligated human genomic DNA. Each primer is composed of common sequence at the 5′ end followed by locus-specific sequence at the 3′ end. Following a primary reaction in which locus-specific products are generated, a secondary universal amplification is carried out using a generic primer pair corresponding to the oligonucleotide and genomic DNA adapter sequences. Allele discrimination is achieved by hybridization to high-density DNA oligonucleotide arrays. Initial multiplex reactions containing either 250 primers or 750 primers across nine DNA samples demonstrated an average sample call rate of ~95% for 250- and 750-plex MARA. We have also evaluated >1000- and 4000-primer plex MARA to genotype SNPs from human chromosome 21. We have identified a subset of SNPs corresponding to a primer conversion rate of ~75%, which show an average call rate over 95% and concordance >99% across seven DNA samples. Thus, MARA may potentially improve the throughput of SNP genotyping when coupled with allele discrimination on high-density arrays by allowing levels of multiplexing during target generation that far exceed the capacity of traditional multiplex PCR.  相似文献   

19.
A system to use bovine EST data in conjunction with human genomic sequence to improve the bovine linkage map over the entire genome or on specific chromosomes was evaluated. Bovine EST sequence was used to provide primer sequences corresponding to bovine genes, while human genomic sequence directed primer design to flank introns and produce amplicons of appropriate size for efficient direct sequencing. The sequence tagged sites (STS) produced in this way from the four sires of the MARC reference families were examined for single nucleotide polymorphisms (SNPs) that could be used to map the corresponding genes. With this approach, along with a primer/extension mass spectrometry SNP genotyping assay, 100 ESTs were placed on the bovine genetic linkage map. The first 70 were chosen at random from bovine EST–human genomic comparisons. An additional 30 ESTs were successfully mapped to bovine Chromosome 19 (BTA19), and comparison of the resulting BTA19 map to the position of the corresponding human orthologs on the HSA17 draft sequences revealed differences in the spacing and order of genes. Over 80% of successful amplicons contained SNPs, indicating that this is an efficient approach to generating EST-associated genetic markers. We have demonstrated the feasibility of constructing a linkage map based on SNPs associated with ESTs and the plausibility of utilizing EST, comparative mapping information, and human sequence data to target regions of the bovine genome for SNP marker development.  相似文献   

20.
In the initial report, introducing a single phosphorothioate modification at the very 3' terminus of the oligodeoxynucleotide primer has been shown to effectively protect the oligodeoxynucleotide degradation due to the 3' exonuclease activity. In this study, we reported a novel finding that phosphorothioate modification at the 3' end of primers could not only effectively prevent the primer from degradation, but could also mediate an off-switch extension by Pfu polymerase when primers also carry single or multiple mismatched bases located in the first eight bases of the 3' terminus. This suggests that the combination of 3' phosphorothioate-modified primers with exo+ polymerases such as Pfu constituted an on/off switch, which allows perfectly matched primers to be extended but not mismatched primers. Furthermore, we found that polymerases with different fidelities showed different efficiencies in turning off mismatched-primer mediated extension. So we described here a SYBR green-based real-time quantitative PCR assay for the detection of abundance level of gene expression that did not require fluorescently labeled gene-specific probes or complicated primer combinations. The emergence of real-time quantitative RT-PCR technology is thus suited for a diverse application with a need for high-throughput methods to detect and quantify different gene expressions by way of simplicity, versatility, and accuracy, and thus could complement global microarray-based expression profiling strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号