共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential effects of oncogenic transformation on N-linked oligosaccharide processing at individual glycosylation sites of viral glycoproteins 总被引:5,自引:0,他引:5
S C Hubbard 《The Journal of biological chemistry》1987,262(34):16403-16411
Hamster sarcoma virus (HSV) transformation of Nil-8 fibroblasts is associated with an increase in the average size of N-acetyllactosamine (complex) type N-linked glycans due to an increase in both the average number of branches/chain and in the fraction of N-linked glycans containing poly(GlcNAc(beta 1,3) Gal-(beta 1,4)) (polylactosaminylglycan) chains. Analysis of glycopeptides from the envelope glycoproteins of Sindbis virus and vesicular stomatitis virus (VSV) grown in Nil-8 and Nil/HSV cells indicated that the transformation-associated shift to larger N-linked oligosaccharides selectively affects some glycosylation sites far more than others. Glycosylation of the Sindbis virus glycoproteins and of Asn-179 of VSV G was similar in Nil-8 and Nil/HSV cells; oligosaccharide processing generally did not proceed beyond the biantennary complex stage. In contrast, Asn-336 of VSV G carried primarily biantennary complex glycans in Nil-8-grown virus (ratio, triantennary, and larger to biantennary complex glycans (tri+/bi) = 0.5) but more highly branched structures in Nil/HSV-grown virus (tri+/bi = 8.1). All of the triantennary or larger oligosaccharides from Asn-336 of Nil/HSV-grown VSV G bound to leukoagglutinating phytohemagglutinin-agarose, indicating the presence of a branch attached to the Man3GlcNAc2 core via a beta 1,6-linked GlcNAc residue and suggesting that increased UDP-GlcNAc:alpha-D-mannoside beta 1,6-N-acetylglucosaminyl transferase V (GlcNAc transferase V) activity accompanied transformation. At least 20% of these leukoagglutinating phytohemagglutinin-binding oligosaccharides were sensitive to an enzyme specific for polylactosaminylglycan chains, Escherichia freundii endo-beta-galactosidase. 相似文献
2.
ABSTRACT: BACKGROUND: In approximately 80% of patients, ovarian cancer is diagnosed when the patient is already in the advanced stages of the disease. CA125 is currently used as the marker for ovarian cancer; however, it lacks specificity and sensitivity for detecting early stage disease. There is a critical unmet need for sensitive and specific routine screening tests for early diagnosis that can reduce ovarian cancer lethality by reliably detecting the disease at its earliest and treatable stages. Results: In this study, we investigated the N-linked sialylated glycopeptides in serum samples from healthy and ovarian cancer patients using Lectin-directed Tandem Labeling (LTL) and iTRAQ quantitative proteomics methods. We identified 45 N-linked sialylated glycopeptides containing 46 glycosylation sites. Among those, ten sialylated glycopeptides were significantly up-regulated in ovarian cancer patients' serum samples. LC-MS/MS analysis of the non-glycosylated peptides from the same samples, western blot data using lectin enriched glycoproteins of various ovarian cancer type samples, and PNGase F (+/-) treatment confirmed the sialylation changes in the ovarian cancer samples. Conclusion: Herein, we demonstrated that several proteins are aberrantly sialylated in N-linked glycopeptides in ovarian cancer and detection of glycopeptides with abnormal sialylation changes may have the potential to serve as biomarkers for ovarian cancer. 相似文献
3.
We developed a convenient method for the synthesis of dextran-based multivalent probes containing N-linked oligosaccharides which is efficient even in a small scale. Oligosaccharides were derivatized with succinic dihydrazide and dimethylamine borane under a mild acidic condition. The derivatized oligosaccharides were then conjugated in a good yield to periodate-oxidized dextran (500 kDa). Thus, the conjugates containing 120 to 140 oligosaccharide chains per dextran molecule were successfully synthesized. Their practical advantage was shown by the example that the asialofetuin oligosaccharide-dextran conjugate has much higher affinity to Ricinus communis agglutinin (RCA-I) than asialofetuin oligosaccharide itself or asialofetuin. The conjugates were further labeled with fluorescent reagent or biotinylation reagent containing a hydrazino group by the use of the unreacted aldehyde groups of the oxidized dextran, yielding probes with similar densities of fluorophores or biotin groups. Direct binding of the biotinylated asialofetuin oligosaccharide-dextran probe to RCA-I coated on the titer plate at a concentration of 50 ng/50 microl was easily detected using 50 fmol (as oligosaccharides) of the probe. The method for the synthesis of dextran-based oligosaccharide probes will facilitate the investigation of carbohydrate-mediated molecular interactions based on the native oligosaccharide structures. 相似文献
4.
Erythrina cristagalli lectin (ECL) is a galactose-specific legume lectin. Although its biological function in the legume is unknown, ECL exhibits hemagglutinating activity in vitro and is mitogenic for T lymphocytes. In addition, it has been recently shown that ECL forms a novel conjugate when coupled to a catalytically active derivative of the type A neurotoxin from Clostridium botulinum, thus providing a therapeutic potential. ECL is biologically active as a dimer in which each protomer contains a functional carbohydrate-combining site. The crystal structure of native ECL was recently reported in complex with lactose and 2'-fucosyllactose. ECL protomers adopt the legume lectin fold but form non-canonical dimers via the handshake motif as was previously observed for Erythrina corallodendron lectin. Here we report the crystal structures of native and recombinant forms of the lectin in three new crystal forms, both unliganded and in complex with lactose. For the first time, the detailed structure of the glycosylated hexasaccharide for native ECL has been elucidated. The structure also shows that in the crystal lattice the glycosylation site and the carbohydrate binding site are involved in intermolecular contacts through water-mediated interactions. 相似文献
5.
A mathematical model of sialylation of N-linked oligosaccharides in the trans-Golgi network 总被引:1,自引:1,他引:0
A mathematical model is developed of the compartmentalized sialylationof N-linked oligosaccharides in order to understand and predictthe outcome of sialylation reactions. A set of assumptions arepresented, including Michaelis-Menten-type dependency of reactionrate on the concentration of the glycoprotein substrate. Theresulting model predicts the heterogeneous outcome of a posttranslationaloligosaccharide biosynthesis step, a critical aspect that isnot accounted for in the modeling of the cotranslational attachmentof oligosaccharides to glycosylation sites (Shelikoff et al.,Biotech. Bioeng., 50, 7390, 1996) or general models ofthe secretion process (Noe and Delenick, J. Cell Sci, 92, 449459,1989). In the steady-state for the likely case where the concentrationof substrate is much less than the Km of the sialyltransferase,the model predicts that the extent of sialylation, x, will dependupon the enzyme concentration, enzyme kinetic parameters andsubstrate residence time in the reaction compartment. The valueof x predicted by the model using available literature datais consistent with the values of x that have been recently determinedfor the glycoproteins CD4 (Spellman et al, Biochemistry, 30,23952406, 1991) and t-PA (Spellman et al, J. Biol Chem.,264, 1410014111, 1989) secreted by Chinese hamster ovarycells. For the unsaturated case, the model also predicts thatx is independent of the concentration of secreted glycoproteinin the Golgi. The general modeling approach outlined in thisarticle may be applicable to other glycosylation reactions andposttranslational modifications. model sialylation N-linked glycosylation 相似文献
6.
A D Elbein 《FASEB journal》1991,5(15):3055-3063
The biosynthesis of the various types of N-linked oligosaccharide structures involves two series of reactions: 1) the formation of the lipid-linked saccharide precursor, Glc3Man9(GlcNAc)2-pyrophosphoryl-dolichol, by the stepwise addition of GlcNAc, mannose and glucose to dolichyl-P, and 2) the removal of glucose and mannose by membrane-bound glycosidases and the addition of GlcNAc, galactose, sialic acid, and fucose by Golgi-localized glycosyltransferases to produce different complex oligosaccharide structures. For most glycoproteins, the precise role of the carbohydrate is still not known, but specific N-linked oligosaccharide structures are key players in targeting of lysosomal hydrolases to the lysosomes, in the clearance of asialoglycoproteins from the serum, and in some cases of cell:cell adhesion. Furthermore, many glycoproteins have more than one N-linked oligosaccharide, and these oligosaccharides on the same protein frequently have different structures. Thus, one oligosaccharide may be of the high-mannose type whereas another may be a complex chain. One approach to determining the role of specific structures in glycoprotein function is to use inhibitors that block the modification reactions at different steps, causing the cell to produce glycoproteins with altered carbohydrate structures. The function of these glycoproteins can then be assessed. A number of alkaloid-like compounds have been identified that are specific inhibitors of the glucosidases and mannosidases involved in glycoprotein processing. These compounds cause the formation of glycoproteins with glucose-containing high mannose structures, or various high-mannose or hybrid chains, depending on the site of inhibition. These inhibitors have also been useful for studying the processing pathway and for comparing processing enzymes from different organisms. 相似文献
7.
L M Hernández L Ballou E Alvarado B L Gillece-Castro A L Burlingame C E Ballou 《The Journal of biological chemistry》1989,264(20):11849-11856
We find that the N-linked Man8GlcNAc2- core oligosaccharide of Saccharomyces cerevisiae mnn mutant mannoproteins is enlarged by the addition of the outer chain to the alpha 1----3-linked mannose in the side chain that is attached to the beta 1----4-linked mannose rather than by addition to the terminal alpha 1----6-linked mannose. This conclusion is derived from structural studies on a phosphorylated oligosaccharide fraction and from mass spectral fragment analysis of neutral core oligosaccharides. 相似文献
8.
Cancer is a major cause of death in both developing and developed countries. Early detection and efficient therapy can greatly enhance survival. Aberrant glycosylation has been recognized to be one of the hallmarks of cancer as glycans participate in many cancer-associated events. Cancer-associated glycosylation changes often involve sialic acids which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the literature on changes of sialylation in serum of cancer patients. Furthermore, the methods available to measure serum and plasma sialic acids as well as possible underlying biochemical mechanisms involved in the serum sialylation changes are surveyed. In general, total serum sialylation levels appear to be increased with various malignancies and show a potential for clinical applications, especially for disease monitoring and prognosis. In addition to overall sialic acid levels and the amount of sialic acid per total protein, glycoprofiling of specific cancer-associated glycoproteins, acute phase proteins and immunoglobulins in serum as well as the measurements of sialylation-related enzymes such as sialidases and sialyltransferases have been reported for early detection of cancer, assessing cancer progression and improving prognosis of cancer patients. Moreover, sialic-acid containing glycan antigens such as CA19–9, sialyl Lewis X and sialyl Tn on serum proteins have also displayed their value in cancer diagnosis and management whereby increased levels of these factors positively correlated with metastasis or poor prognosis. 相似文献
9.
S Masutani N Miyazawa S Fujii A Nishikawa H Matsukawa T Shimano T Mori N Taniguchi 《Analytical biochemistry》1990,188(1):149-154
Two monoclonal antibodies to an N-linked oligosaccharide, MT-5 and MT-9, have been prepared by immunization with a pyridylaminated, asialylated, galactosylated, fucosylated, bisected biantennary sugar. The reactivity of these antibodies was monitored by their reaction with human asialoglycophorin in a solid-phase enzyme-linked immunosorbent assay. Both antibodies reacted with the sugar chains of various human glycoproteins such as immunoglobulin G, transferrin, gamma-glutamyl transpeptidase, alpha 1-acid glycoprotein, and alpha-fetoprotein. Treatment of asialoglycophorin with beta-N-acetylhexosaminidase or alpha-mannosidase resulted in reduction of the binding to these antibodies. The reactivity of MT-5 to asialoglycophorin was slightly inhibited by D-mannose and N-acetylglucosamine, whereas that of MT-9 was inhibited by D-mannose, N-acetyl-D-glucosamine, chitobiose, and L-fucose. The epitope specificity of MT-5 appears to be a sugar chain containing biantennary N-acetyl-D-glucosamine residues, the bisected N-acetyl-D-glucosamine residue, and a trimannosyl core. The epitope to which MT-9 is directed may be a complex made up of beta-mannose, chitobiose, and L-fucose. These studies indicate that immunization with pyridylaminated sugars can produce antibodies that recognize N-linked oligosaccharides. Monoclonal/polyclonal antibodies to the N-linked sugar chains of glycopeptides would be useful in such studies of proteins. 相似文献
10.
N-linked oligosaccharide processing and autocrine stimulation of tumor cell proliferation 总被引:4,自引:0,他引:4
Somatic mutations which impair complex-type N-linked oligosaccharide processing and chemical inhibitors of processing have been shown to reduce metastatic potential in several experimental tumor models. In this report, we demonstrate that glycosylation mutants of the metastatic MDAY-D2 tumor cell line with either truncated glycans lacking sialic acid and galactose or a mutant with less branched N-linked oligosaccharides grow more slowly in serum-free medium (SFM) than do MDAY-D2 cells. In medium containing fetal calf serum, growth rates of the cell lines were similar. A revertant of the former mutation showed a return to a more rapid growth rate in SFM. The N-linked processing inhibitor swainsonine also reduced cell growth rate in SFM but not in serum-containing medium. One of five randomly selected clones of the MDAY-D2 tumor cell line showed a slower growth rate in SFM and also showed decreased expression of branched N-linked oligosaccharides. These observations suggest that in MDAY-D2 cells, optimal factor-independent stimulation is dependent upon expression of branched complex-type N-linked oligosaccharides. The growth rate of MDAY-D2 cells in SFM was dependent on the initial seeding density of the cultures, and medium conditioned by the cells accelerated the growth of low-density cultures, suggesting that the cells respond to an autocrine factor. Culture supernatants conditioned by mutant and wild-type cells had similar levels of growth-stimulating activity. However, both mutants and swainsonine-treated cells were less responsive to this growth-stimulating activity. The growth rates of the MDAY-D2 tumor cell lines in vivo as subcutaneous tumors correlated with their relative growth rates in SFM in vitro. The results suggest that branched complex-type N-linked oligosaccharides commonly expressed in malignant cells are required for optimal autocrine-dependent growth in vitro and may be a significant factor in tumor progression in vivo. 相似文献
11.
Glycoproteins often display a complex isoelectric focusing profile because of the presence of negatively charged carbohydrates, such as sialic acid, phosphorylated mannose, and sulfated GalNAc. Until now, understanding the role of these charged carbohydrates in determining the isoelectric focusing profile has been limited to observing pattern shifts following complete removal of the sugars in question. We have developed a simple and sensitive method for analyzing N-linked oligosaccharides from the individual isoelectric focusing bands of a glycoprotein using recombinant human thyroid-stimulating hormone as a model system. N-linked oligosaccharides were released and profiled from individual bands following electroblotting of isoelectric focusing gels. As might be predicted, high-pH anion-exchange chromatography-pulsed amperometric detection and matrix-assisted laser desorption/ionization-time of flight analyses indicated that the bands that migrated closer to the positive electrode contained more sialylated N-linked oligosaccharides. The sialic acid content of these bands correlated with that predicted from the corresponding oligosaccharide analyses. 相似文献
12.
13.
David Emlyn Hughes 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1994,657(2)
A procedure for the analysis of mixtures of underivatized, cleaved O-linked and N-linked oligosaccharides by capillary electrophoresis has been developed. The species of interest are separated by two borate-based buffer systems with an uncoated capillary. The procedure is applied to hydrazinolysis-released oligosaccharides from mouse, rat, sheep and human IgG protein samples which are examined within 6 minutes. Selectivity with respect to sample variation is demonstrated by analysis of thermally stressed samples. 相似文献
14.
Structures of the N-linked glycans released from porcine kidney diamine oxidase (DAO) were characterized utilizing various analytical techniques, including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS), high-performance capillary electrophoresis (HPCE), and high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The oligosaccharide sequences present in DAO were conclusively determined using specific exoglycosidases in conjunction with MALDI/TOF-MS. The structures found in the glycoprotein are primarily linear, di-, or tribranched fucosylated complex type. MS analysis of the esterified N-glycan pool derived from DAO indicated the presence of several di- and trisialylated structures. 相似文献
15.
16.
From our previous studies, we learned that syndecan-2/p120-GAP complex provided docking site for Src to prosecute tyrosine kinase activity upon transformation with oncogenic ras. And, RACK1 protein was reactive with syndecan-2 to keep Src inactivated, but not when Ras was overexpressed. In the present study, we characterized the reaction between RACK1 protein and Ras. RACK1 was isolated from BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q61K)] of shrimp Penaeus japonicus and RACK1 was revealed to react with GTP-K(B)-Ras(Q61K), not GDP-K(B)-Ras(Q61K). This selective interaction between RACK1 and GTP-K(B)-Ras(Q61K) was further confirmed with RACK1 of human placenta and mouse RACK1-encoded fusion protein. We found that RACK1 was dimerized upon reaction with GTP-K(B)-Ras(Q61K), as well as with 14-3-3beta and geranylgeranyl pyrophosphate, as revealed by phosphorylation with Src tyrosine kinase. We reported the complex of RACK1/GTP-K(B)-Ras(Q61K) reacted selectively with p120-GAP. This interaction was sufficient to dissemble RACK1 into monomers, a preferred form to compete for the binding of syndecan-2. These data indicate that the reaction of GTP-K(B)-Ras(Q61K) with RACK1 in dimers may operate a mechanism to deplete RACK1 from reaction with syndecan-2 upon transformation by oncogenic ras and the RACK1/GTP-Ras complex may provide a route to react with p120-GAP and recycle monomeric RACK1 to syndecan-2. 相似文献
17.
Radioresistance induced by oncogenic transformation 总被引:3,自引:0,他引:3
Rat embryo cells at various stages of oncogenic transformation are obtained by a combination of X irradiation and transfection with the ras and the myc oncogenes. Transfection with either the ras or the myc oncogenes can lead to increased radioresistance, relative to the parental cells. X-ray-transformed clones of the transfected cells do not show additional alteration in radioresponse. Incorporation of the two oncogenes appears to lead to a higher degree of radioresistance. 相似文献
18.
N-linked oligosaccharide processing is not necessary for glycoprotein secretion in plants 总被引:3,自引:0,他引:3
Patrice Lerouge Anne-Catherine Fitchette-Lainé Aïcha Chekkafi Véronique Avidgor Loïc Faye 《The Plant journal : for cell and molecular biology》1996,10(4):713-719
The role of N-glycans in the secretion of glycoproteins by suspension-cultured sycamore cells was studied. The transport of glycoproteins to the extracellular compartment was investigated in the presence of a glycan-processing inhibitor, castanospermine. Castanospermine has been selected because it inhibits homogeneously glycan maturation in sycamore cells and leads to the accumulation of a single immature N-glycan. The structure of this glycan has been identified as Glc3 Man7 GlcNAc2 by labeling experiments, affinity chromatography on concanavalin A-Sepharose and proton NMR. In contrast with previous results showing that N-glycosylation is a pre-requisite for secretion of N-linked glycoproteins, this secretion is not affected by the presence of castanospermine. As a consequence, the presence of this unprocessed glycan is sufficient for an efficient secretion of glycoproteins in the extracellular compartment of suspension-cultured sycamore cells. 相似文献
19.
Marcus M. Ha¨mmerle Andrei A. Aleksandrov Xiu-bao Chang John R. Riordan 《Glycoconjugate journal》2000,17(11):807-813
We have examined the influence of a novel missense mutation in the fourth extracytoplasmic loop (EL4) of CFTR detected in a patient with cystic fibrosis. This substitution (T908N) creates a consensus sequence (N X S/T) for addition of an N-linked oligosaccharide chain near the C-terminal end of EL4. Oligosaccharyl transferase generally does not have access to this consensus sequence if it is closer than about twelve amino acids from the membrane. However, the T908N site is used, even though it is within four residues of the predicted membrane interface and the oligosaccharide chain added binds calnexin, a resident chaperone of the ER membrane. The chloride channel activity of this variant CFTR is abnormal as evidenced by a reduced rate of 36Cl– efflux and a noisy single channel open state. This may reflect some displacement of the membrane spanning sequence C-terminal of EL4 since it contains residues influencing the ion pore. 相似文献
20.
Inhibition of N-linked oligosaccharide trimming mannosidases blocks human B cell development. 总被引:3,自引:0,他引:3 下载免费PDF全文
Deoxymannojirimycin (dMM) or swainsonine (SW), which block conversion of high-mannose to complex-type N-linked glycans, strongly inhibited the production of immunoglobulin (Ig) when added to cultures of human lymphocytes together with the polyclonal B cell activators pokeweed mitogen (PWM) and Staphylococcus aureus (SAC). To obtain the inhibitory effect, inhibitor had to be present during the first 36 h of culture. Addition at later timepoints was less effective and showed that neither inhibitor interfered with rate of production or secretion of Ig as such. Viability and proliferation of the lymphocytes, as defined by cell number and rate of DNA synthesis, were not influenced by the presence of dMM or SW, and no changes in the relative number of helper (T4+) or suppressor (T8+) cells were observed. Thus, for normal differentiation of human B lymphocytes into Ig secreting (plasma) cells in response to PWM and SAC, conversion of high-mannose to complex N-linked glycans is essential. 相似文献