首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine in rat adrenal glomerulosa   总被引:1,自引:0,他引:1  
There is increasing evidence that dopamine (DA) inhibits aldosterone production, but the source of DA for this dopaminergic influence is not known. In the present study we examined the adrenal's zona glomerulosa for the presence of DA. Rats maintained on an intake of regular food were killed by decapitation and the adrenal capsule (containing zona glomerulosa) and the remainder of the gland (containing both cortex and medulla) were examined for their content of DA and also for norepinephrine (NE) and epinephrine (E). DA was found in adrenal glomerulosa in substantial quantity, 1.92 +/- 0.17 (SEM) ng/mg wet weight, representing an approximate concentration of DA of 1-100 microM. DA in adrenal capsule represented 12.2% of the total adrenal content of DA. NE and E were also present in glomerulosa, 3.46 +/- 0.32 and 18.7 +/- 2.1 ng/mg respectively, but, unlike DA, about 98% of the total adrenal content of NE and E was contained in adrenal medulla. The NE/E ratio in capsule and medulla were similar, although slightly higher in adrenal medulla, suggesting that the medulla is the source of the NE and E found in glomerulosa. On the other hand, the DA/E ratio was several-fold higher in glomerulosa than medulla--suggesting that glomerulosa DA was derived at least partially from a source other than adrenal medulla. We also found that short-term culturing of the adrenal reduced DA levels to 1/3 that observed in fresh tissue. This could explain in part why cultured glomerulosa has been shown to be more responsive to administered stimuli. In summary, the findings indicate a significant concentration of DA in adrenal glomerulosa, and suggest that the effects of DA on aldosterone production are mediated locally within the adrenal.  相似文献   

2.
A single class of high-affinity binding sites for [125I]angiotensin III and [125I]angiotensin II were found in rat adrenal medulla and zona glomerulosa by quantitative autoradiography. In the medulla, Kd were 1.46 and 1.16 nM, and Bmax 1700 and 1700 fmol/mg protein, for [125I]angiotensin II and [125I]angiotensin III, respectively. In the zona glomerulosa, Kd were 0.86 and 0.90 nM, and Bmax 790 and 560 fmol/mg protein, for [125I]angiotensin II and [125I]angiotensin III, respectively. Unlabeled angiotensin III and angiotensin II displaced [125I]angiotensin III with similar potency in both adrenal zona glomerulosa and medulla. Our findings suggest that angiotensin III and angiotensin II might share the same binding sites in adrenal gland and support the hypothesis of a role for angiotensin III in the adrenal medulla and zona glomerulosa.  相似文献   

3.
4.
In the present study, we examined the morphological features of the adrenal gland in Bactrian camel by means of digital anatomy, light and electron microscopy. Our findings testified that the gland was divided into three parts, capsule, cortex and medulla from outside to inside as other mammals, and the cortex itself was further distinguished into four zones: zona glomerulosa, zona intermedia, zona fasciculate and zona reticularis. Notably, the zona intermedia could be seen clearly in the glands from females and castrated males, whereas it was not morphologically clear in male. There was a great deal of lipid droplets in the zona fasciculate, while it was fewer in the zona glomerulosa and zona reticularis. The cytoplasm of adrenocortical cell contained rich mitochondria and endoplasmic reticulum. The adrenal medulla was well-developed with two separations of external and internal zones. The most obvious histological property of adrenal medulla cells were that they contained a huge number of electron-dense granules enveloped by the membrane, and so medulla cells could be divided into norepinephrine cells and epinephrine cells. Moreover, the cortical cuffs were frequently present in adrenal gland. Results of this study provides a theoretical basis necessary for ongoing investigations on Bactrian camels and their good adaptability in arid and semi-arid circumstances.  相似文献   

5.
Summary The distribution of monoamine oxidase types A and B within the adrenal galdn was studied in several mammals by histochemical methods. Controls showed that the methods were valid. The bovine adrenal medulla contained mostly the B type enzyme, distributed heterogeneously, with some A type associated with endothelium, nerves, and cells surrounding the nerves. The bovine adrenal cortex showed a marked zonation of the two types of monoamine oxidase. The zona glomerulosa contained the B type enzyme and the zona fasciculata and zona reticularis contained the type A enzyme. The adrenal medulla of the dog, cat, and rat demonstrated relatively little enzyme activity and it appeared to be both type A and B. The adrenal cortex of these animals appeared to contain mostly the B type enzyme, except the canine zona reticularis, which contained some A type monoamine oxidase as well.  相似文献   

6.
Summary Previous studies have shown that somatostatin modulates angiotensin-induced aldosterone secretion by adrenal glomerulosa cells. This effect is mediated through specific receptors which do not show any preference for somatostatin-14 (S14) or the N-extended form somatostatin-28 (S28). The study of the distribution of 125I-Tyr [Tyr0, DTrp8] S14-and 125I-Tyr[Leu8, DTrp22, Tyr25] S28-binding in frozen sections of the rat adrenal by autoradiography indicated that both peptides bind to similar loci. High concentrations of binding sites were observed in the zona glomerulosa, and low concentrations were detected in the medulla. At the ultrastructural level, immunocytochemistry after cryoultramicrotomy revealed endogenous S14-and S28-like immunoreactive material in zona glomerulosa and in medulla. In glomerulosa cells, immunoreactive material was localized at the plasma membrane level, in the cytoplasmic matrix, in the mitochondria, and in the nucleus. S14-and S28-like materials were detected in both epinephrine and norepinephrine-storing cells of the adrenal medulla. In these cells, the distribution of either immunoreactive product was similar; it was observed in cytoplasmic matrix, secretory granules and nucleus, but not at the plasma membrane level. In situ hybridization does not reveal somatostatin mRNA in zona glomerulosa or medulla. These results demonstrate that S14 and S28 bind to, and are taken up by zona glomerulosa and adrenal medullary cells, but are not produced by these cells.  相似文献   

7.
The effects of a 3-day water deprivation were studied in adult female rats in order to know what are the different zones of the adrenal gland and the hormonal factors involved in the growth and the activity of the adrenal gland. Water deprivation significantly increased plasma renin activity (PRA), plasma Angiotensin II (AII), vasopressin (AVP), epinephrine, aldosterone and corticosterone concentrations but did not modify the plasma adrenocorticotropin hormone (ACTH) level. Water deprivation significantly increased the absolute weight of the adrenal capsule containing the zona glomerulosa without modification of the density of cells per area unit suggesting that the growth of the adrenal capsule was due to a cell hyperplasia of the zona glomerulosa. Water deprivation significantly increased the density of AII type 1 (AT1) receptors in the adrenal capsule but did not modify the density of AII type 2 (AT2) receptors in the adrenal capsule and core containing the zona fasciculata, the zona reticularis and the medulla. The treatment of dehydrated female rats with captopril, which inhibits the angiotensin converting enzyme (ACE) in order to block the production of AII, significantly decreased the absolute weight of the adrenal capsule, plasma aldosterone and the density of AT1 receptors in the adrenal capsule. The concentration of corticosterone in the plasma, the density of AT2 receptors and the density of cells per unit area in the zona glomerulosa of the adrenal capsule were not affected by captopril-treatment. In conclusion, these results suggest that AII seems to be the main factor involved in the stimulation of the growth and the secretion of aldosterone by the adrenal capsule containing the zona glomerulosa during water deprivation. The low level of plasma ACTH is not involved in the growth of the adrenal gland but is probably responsible for the secretion of corticosterone by the zona fasciculata.  相似文献   

8.
9.
10.
Adrenal ferredoxin, the iron-sulfur protein associated with cytochromes P-450 in adrenocortical mitochondria, has been localized immunohistochemically at the light microscopic level in rat adrenals by employing rabbit antiserum to bovine adrenal ferredoxin in both an unlabeled antibody peroxidase-antiperoxidase method and an indirect fluorescent antibody method. When sections of rat adrenals were exposed to the adrenal ferredoxin antiserum in both procedures, positive staining for adrenal ferredoxin was observed in parenchymal cells of the three cortical zones but not in medullary chromaffin cells. Marked differences in the intensity of staining, however, where observed among the three cortical zones: the most intense staining being found in the zona fasciculata, less in the zona reticularis, and least in the zona glomerulosa. Furthermore, differences in staining intensity were also observed among cells within both the zona fasciculata and the zona reticularis. In agreement with these immunohistochemical observations, determinations of adrenal ferredoxin contents by electron paramagnetic resonance (EPR) spectrometry in homogenates prepared from capsular and decapsulated rat adrenals revealed that the concentration of adrenal ferredoxin in the zona glomerulosa was lower than that in the zona fasciculata-reticularis. Similar results were obtained when the contents of cytochrome P-450 were determined in capsular adn decapsulated rat adrenal homogenates. These observations indicate that adrenal ferrodoxin and cytochrome P-450 are not distributed uniformly throughout the rat adrenal cortex.  相似文献   

11.
The physiologic regulation of aldosterone secretion is dependent on extracellular calcium and appears to be mediated by increases in cytosolic free calcium concentration in the zona glomerulosa cell. A specific role for voltage-dependent calcium channels was suggested by previous studies with the calcium channel antagonist verapamil. We therefore studied the [3H]nitrendipine calcium channel binding site in adrenal capsules. These studies revealed a single class of saturable, high affinity sites with KD = .26 +/- .04 nM and Bmax = 105 +/- 5.7 fmol/mg protein. Specific binding of [3H]nitrendipine was inhibited by calcium channel antagonists with potencies nitrendipine = nifedipine much greater than verapamil, while diltiazem had no inhibitory effect. In the rat, binding sites for [3H]nitrendipine were located in the adrenal capsule and medulla and were undetectable in the zona fasciculata. Physiologic studies with collagenase-dispersed adrenal glomerulosa cells demonstrated that nifedipine selectively inhibited angiotensin-II and potassium-stimulated steroidogenesis. These observations suggest both a pharmacologic and physiologic role for the nitrendipine binding site in aldosterone production.  相似文献   

12.
Cellular distribution of vitamin A in the rat adrenal was evaluated by autoradiography. Vitamin A was concentrated in the lipid droplets of epithelial cells of the zona fasciculata and zona reticularis. A small amount of vitamin A was also present in the cytoplasm and nucleus of these cells. The zona glomerulosa contained very little vitamin A either in lipid droplets or in the remainder of the cell. The medulla had essentially no vitamin A. Such strong cellular specificity for uptake of vitamin A by the cells of the zona fasciculata and zona reticularis supports the hypothesis that vitamin A is involved in synthesis of glucocorticoid hormones.  相似文献   

13.
The aim of this study was to evaluate the possible changes of adrenal neuronal nitrite oxide synthase (nNOS) messenger RNA (mRNA) and protein of rats after deoxycorticosterone acetate (DOCA)-salt treatment. We determined adrenal nNOS expression in 12 vehicle-treated and 13 DOCA-salt-treated rats by in situ hybridization, immunohistochemistry, and multiplex RT-PCR methods. Adrenal nNOS was also detected by Western blot in five vehicle-treated and five DOCA-salt-treated rats. The results showed that adrenal nNOS mRNA and nNOS immunoreactivities were mainly localized in the medulla and some in the regions of zona glomerulosa. DOCA-salt treatment inactivated nNOS mRNA and peptide expression prominent in the adrenal medulla and slight in the zona glomerulosa. The relative quantities of nNOS mRNA in the adrenals of the DOCA-salt-treated group was 8.8-fold decreased. At the same time, the relative quantities of steroid acute regulatory protein mRNA and phenylethanolamine N-methyltransferase mRNA in the adrenals of the DOCA-salt-treated group were significantly decreased. Western blots showed that total adrenal nNOS were 3.7-fold down-regulated after DOCA-salt treatment. Our results indicated that the down-regulation of adrenal nNOS synthesis might be associated with the inactivation of adrenal function in face of volume expansion.  相似文献   

14.
In the present study we investigated the ontogeny of the expression of the type 1 angiotensin receptor (AT(1)R mRNA) and the zonal localization of AT(1)R immunoreactivity (AT(1)R-ir) and cytochrome P450(c11) (CYP11B-ir) in the sheep adrenal gland. In the adult sheep and in the fetus from as early as 90 days gestation, intense AT(1)R-ir was observed predominantly in the zona glomerulosa and to a lesser extent in the zona fasciculata, and it was not detectable in the adrenal medulla. AT(1)R mRNA decreased 4-fold between 105 days and 120 days, whereas AT(1)R mRNA levels remained relatively constant between 120 days and the newborn period. In contrast, both in the adult sheep and in the fetal sheep from as early as 90 days gestation, intense CYP11B-ir was consistently detected throughout the adrenal cortex and in steroidogenic cells that surround the central adrenal vein. In conclusion, we speculate that the presence of AT(1)R in the zona fasciculata, and the higher levels of expression of AT(1)R at around 100 days gestation, may suggest that suppression of CYP17 is mediated via AT(1)R at this time. The abundant expression of AT(1)R-ir and CYP11B-ir in the zona glomerulosa of the fetal sheep adrenal gland would also suggest that lack of angiotensin II stimulation of aldosterone secretion is not due to an absence of AT(1)R or CYP11B in the zona glomerulosa.  相似文献   

15.
The factor inhibiting aldosterone secretion produced by the adrenal medulla may be atrial natriuretic factor (ANF), since the latter abolishes aldosterone release in response to a number of secretagogues, including angiotensin II and K+. In this study we have shown that cells in the adrenal medulla contain ANF mRNA and therefore have the potential to synthesize this peptide. The presence of binding sites for ANF predominantly in the adrenal zona glomerulosa suggests that, if ANF is synthesized in the medulla and transferred to the cortex, it may affect mineralocorticoid status.  相似文献   

16.
Immunoreactive 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase (3 beta-HSD) was localized in adrenal glands of sheep fetuses in cortical-type cells, but not in medullary-type cells, from day 43 of gestation to term and in 2-4-day-old neonates. From day 54 of gestation, the formation of distinct zones within the adrenal cortex was apparent and immunoreactive 3 beta-HSD was found in cortical cells in the zona fasciculata and in groups and cords of cortical cells within the developing medulla, with weak positive staining in the zona glomerulosa. At this stage, most medullary cells were positive for immunoreactive tyrosine hydroxylase, and some of these cells with a juxtacortical distribution also stained positively for immunoreactive phenylethanolamine N-methyl transferase (PNMT). Between days 65 and 130, the adrenal medulla increased in size with little change in the width of the cortex. Organization and zonation of immunoreactive 3 beta-HSD staining cells were evident in the zona fasciculata and in groups of cells in the medulla. Between day 130 and term, uniform immunoreactive 3 beta-HSD staining was found throughout the zona fasciculata, and there was also staining in single cells and small clusters of cells throughout the medulla. At this stage, immunoreactive tyrosine hydroxylase was distributed in most cells throughout the medulla, but in two distinct patterns: cells staining intensely for immunoreactive tyrosine hydroxylase in the central region of the medulla, and cells exhibiting weaker staining for immunoreactive tyrosine hydroxylase localized in a juxta-cortical position. These juxta-cortical cells were also positive for immunoreactive PNMT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Human adrenal glands contain high-affinity receptors for insulin and insulin-like growth factor I (IGF-I). Comparative studies with rat, hamster and human adrenal membranes confirmed that IGF-I receptors are most abundant in rat and hamster adrenals, whereas insulin and IGF-I receptors are present in equivalent numbers in human adrenal glands. Covalent crosslinking studies revealed that the human adrenal gland IGF-I receptor binding subunit migrated on dodecyl sulfate polyacrylamide gels with Mr = 135,000, which is identical to the migration of IGF-I receptor binding subunits isolated from other tissues. Autoradiography of frozen human adrenal slices incubated with [125I]insulin showed prominent, displaceable binding of this radioligand to the zona reticularis, zona glomerulosa, vasculature and medulla; in contrast, [125I]IGF-I binding to human adrenal tissue was most prominent in the zona reticularis and negligible in the medullary region.  相似文献   

18.
The effect of atrial natriuretic peptides synthetic analog AP II on adrenal zona glomerulosa and zona fasciculata physiological regeneration have been studied on male rats. The 3H-thymidine incorporation into DNA in adrenal cortical cells was evaluated in 4 and 24 h after intraperitoneal injection of 10 or 100 mcg/kg AP II. Besides, we have investigated the influence of AP II on adrenal cortical cells karyometric parameter in 4 and 24 h and aldosterone plasma concentration in 1 h after injection. 10 mcg/kg AP II increased the fraction of labelled nuclei in zona glomerulosa and decreased the aldosterone plasma level. No significant changes were seen in zona fasciculata cells proliferation. 100 mcg/kg AP II inhibited the DNA synthesis process in adrenal zona fasciculata, but had no significant influence on zona glomerulosa physiological regeneration and aldosterone plasma concentration. No nuclear morphometric parameter changes were observed in adrenal glomerulosa and fasciculata cells of AP II--treated animals.  相似文献   

19.
Adrenarche is the direct consequence of the organogenesis of the zona reticularis (ZR). Proliferation of cortical cells could take place in the outermost layers of the adrenal cortex. Cells could then migrate to differentiate the zona glomerulosa (ZG) and zona fasciculata (ZF) during fetal life, and the ZR during postnatal life. After adrenarche, there are detectable increases in circulating DHEA and DHEA-S. Adrenarche could result from an increase in 17,20-lyase activity of P450c17 secondary to high levels of cytochrome b(5) expression, and from a decrease in 3betaHSD2 expression along with an increase in the expression of SULT2A1 in the ZR. The GH-IGF system and insulin, among other factors, might also modulate adrenal androgen production. Furthermore, high concentrations of estradiol enhance basal and ACTH-stimulated DHEA-S production, while aromatase expression was observed in the human adrenal medulla but not in the ZR, suggesting that estrogens produced in the adrenal medulla might be involved in the regulation of androgen production in the ZR. Premature adrenarche might be associated with ovarian hyperandrogenism and polycystic ovarian syndrome in females, as well as with insulin resistance in both sexes. However, many questions remain, transforming adrenal androgens into markers of diseases important for human health.  相似文献   

20.
 The detailed distribution and heterogeneity of various immunocompetent cells were characterized in the normal adrenal gland of the rat, with special emphasis on major histocompatibility complex (MHC) class II-expressing cells and macrophages. All adrenals contained at least two different populations of cells reactive with the dendritic cell or the macrophage antibodies. These cells were clearly distinguished from adrenal parenchymal cells by their morphology and location. The majority of dendritic cells were immunoreactive for the MHC class II (Ia) antigen (MRC OX6) and/or the dendritic cell antibodies (MRC OX62), and negative for the macrophage antibodies (ED1, ED2, and/or MRC OX42), whereas the main population of macrophages was immunonegative for the former antibodies and positive for the latter. The OX62-positive cells and the OX42-labeled cells occurred exclusively throughout the medulla. The cellular density of dendritic cells in the adrenal cortex was significantly higher than that of macrophages. Double-immunoperoxidase staining for ED1 and OX6 revealed that positively stained cells could be classified into the following categories: ED1+OX6+, ED1+OX6, and ED1OX6+. More then 40% of OX6+ cells were immunoreactive for ED1 in the zona glomerulosa, while approximately 15%, 20%, and 30% of OX6+ cells were positive for ED1 in the zona fasciculata, zona reticularis and medulla, respectively. ED1+ED2 cells were more frequently detected in the zona glomerulosa than in other adrenal zones. Only a few ED1ED2+ cells were located in the zona glomerulosa, whereas a large number of them were found in the zona fasciculata. In the zona reticularis and medulla, ED1+ED2+, ED1+ED2, and ED1ED2+ cells were detected in the ratio 2:1:3. Our rsults suggest that dendritic cells and macrophages mature during their migration within the adrenal gland. These immunocompetent cells may contribute to a paracrine regulation of adrenal function under physiological conditions. Accepted: 3 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号