首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N-Acetylglucosaminyltransferase I (GlcNAcT-I, EC 2.4.1.101) is the enzyme which initiates the formation of complex N-linked glycans in eukaryotes by transforming GlcNAc to the oligo-mannosyl acceptor Man(5)GlcNAc(2)-Asn. The enzymatic activity and the structure that is synthesised by this enzyme are found in animals and plants but not in yeast. cDNAs encoding the enzyme have already been cloned from several mammals and the nematode Caenorhabditis elegans. In this article the cloning of an Arabidopsis thaliana GlcNAcT-I cDNA with homology to animal cDNAs is described. By expression of the plant cDNA in CHO Lec1 cells, a mammalian cell line deficient in GlcNAcT-I, it was shown that it encodes an active enzyme with the same enzymatic activity as the animal homologue. It has already been shown that a human GlcNAcT-I can complement an A. thaliana mutant (cgl-1). Here it is shown that the reverse is also true, the plant glycosyltransferase is able to complement a mammalian mutant (Lec1) deficient in GlcNAcT-I.  相似文献   

2.
In animal cells, the enzyme alpha(1,3)-mannoside-beta(1,2)-N-acetylglucosaminyltransferase I (GlcNAc-TI, EC.2.4.1.101) catalyzes the addition of N-acetylglucosamine to the ASN-linked Man GlcNAc oligosaccharide. The Chinese hamster ovary (CHO) mutant cell line Lec1 is deficient in this enzyme activity and, therefore, accumulates mannose-terminating cell surface ASN-linked oligosaccharides. Consequently, Lec1 cells are sensitive to the cytotoxic effects of the mannose-binding lectin Concanavalin A (Con A). Lec1 cells were co-transformed with human DNA from A431 cells and eukaryotic expression plasmids containing the bacterial neo gene by calcium phosphate/DNA-mediated transformation. Co-transformants were selected for resistance to Con A and G-418. DNA from a primary co-transformant was purified and used to transform Lec1 cells, resulting in secondary co-transformants. Both primary and secondary co-transformants exhibited in vitro GlcNAc-TI-specific enzyme activity. DNA gel blot analysis indicated that secondary co-transformants contained both human and neo sequences.  相似文献   

3.
Most Caucasians have two major liver aldehyde dehydrogenase isozymes, ALDH1 and ALDH2, while approximately 50% of Orientals have only ALDH1 isozyme, missing the ALDH2 isozyme. A remarkably higher frequency of acute alcohol intoxication among Orientals than among Caucasians could be related to the absence of the ALDH2 isozyme, which has a low apparent Km for acetaldehyde. Examination of liver extracts by two-dimensional crossed immunoelectrophoresis revealed that an atypical Japanese liver, which had no ALDH2 isozyme, contained an enzymatically inactive but immunologically cross-reactive material corresponding to ALDH2, beside the active ALDH1 isozyme. Therefore, the absence of ALDH2 isozyme in atypical Orientals is not due to regulatory mutation, gene deletion, or nonsense mutation, but must be due to a structural mutation in a gene for the ALDH2 locus, resulting in synthesis of enzymatically inactive abnormal protein.  相似文献   

4.
The patatin-like phospholipase domain containing 3 (PNPLA3, also called adiponutrin, ADPN) is a membrane-bound protein highly expressed in the liver. The genetic variant I148M (rs738409) was found to be associated with progression of chronic liver disease. We aimed to establish a protein purification protocol in a yeast system (Pichia pastoris) and to examine the human PNPLA3 enzymatic activity, substrate specificity and the I148M mutation effect. hPNPLA3 148I wild type and 148M mutant cDNA were cloned into P. pastoris expression vectors. Yeast cells were grown in 3 L fermentors. PNPLA3 protein was purified from membrane fractions by Ni-affinity chromatography. Enzymatic activity was assessed using radiolabeled substrates. Both 148I wild type and 148M mutant proteins are localized to the membrane. The wild type protein shows a predominant lipase activity with mild lysophosphatidic acid acyl transferase activity (LPAAT) and the I148M mutation results in a loss of function of both these activities. Our data show that PNPLA3 has a predominant lipase activity and I148M mutation results in a loss of function.  相似文献   

5.
6.
Chen W  Unligil UM  Rini JM  Stanley P 《Biochemistry》2001,40(30):8765-8772
A key enzyme in regulating the maturation of N-linked glycans is UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GlcNAc-TI, EC 2.4.1.101). Lec1 CHO cells lack GlcNAc-TI activity and synthesize only the oligomannosyl class of N-glycans. By contrast, Lec1A CHO mutants have weak GlcNAc-TI activity due to the reduced affinity of GlcNAc-TI for both the UDP-GlcNAc and Man(5)GlcNAc(2)Asn substrates. Lec1A CHO mutants synthesize hybrid and complex N-glycans, albeit in reduced amounts compared to parental CHO cells. In this paper, we identify two point mutations that gave rise to the Lec1A phenotype in three independent Lec1A CHO mutants. The G634A mutation in Lec1A.2C converts an aspartic acid to an asparagine at amino acid 212, disrupting a conserved DXD motif (E(211)DD(213) in all GlcNAc-TIs) that makes critical interactions with bound UDP-GlcNAc and Mn(2+) ion in rabbit GlcNAc-TI. The C907T mutation in Lec1A.3E and Lec1A.5J converts an arginine conserved in all GlcNAc-TIs to a tryptophan at amino acid 303, altering interactions that are important in stabilizing a critical structural element in rabbit GlcNAc-TI. Correction of each mutation by site-directed mutagenesis restored their GlcNAc-TI activity and lectin binding properties to parental levels. The effect of the two amino acid changes on GlcNAc-TI catalysis is discussed in relation to the crystal structure of rabbit GlcNAc-TI complexed with manganese and UDP-GlcNAc.  相似文献   

7.
Alpha-amanitin resistance: a dominant mutation in CHO cells.   总被引:4,自引:0,他引:4  
P E Lobban  L Siminovitch 《Cell》1975,4(2):167-172
Hybrids of CHO cells were constructed consisting of either a 1:1 or 1:2 ratio of alpha-amanitin-resistant and sensitive cells, respectively. The resistance of such hybrids to killing by the drug was similar but slightly less than that of the resistant parent. The hybrids contained both resistant and wild-type RNA polymerase II, in amounts related to the expected gene dosage. The alpha-amanitin marker therefore is expressed codominantly.  相似文献   

8.
9.
We have identified three developmentally regulated oligosaccharide-processing enzyme activities in Dictyostelium discoideum. Two different alpha-mannosidase activities present at extremely low levels in vegetative cells are expressed during development. The first of these activities (MI) rises sharply from 6 to 12 h of development whereas the second activity (MII) rises sharply from 12 to 18 h of development. MI acts on Man9GlcNAc, which it can degrade to Man5GlcNAc but is inactive toward p-nitrophenyl-alpha-D-mannoside (pnpMan). MII acts on pnpMan but not Man9GlcNAc. These activities are distinct from each other and from lysosomal alpha-mannosidase activity as demonstrated by pH optima, substrate specificity, sensitivity to inhibitors and divalent cations, developmental profiles, and solubility. The characteristics of these developmentally regulated alpha-mannosidase activities are similar to those of Golgi alpha-mannosidases I and II from higher eucaryotes, and they appear to catalyze the in vivo formation of processed asparagine-linked oligosaccharides by developed cells. In addition, developed cells have very low levels of a soluble alpha-mannosidase activity, which is the predominant activity in vegetative cells. This soluble vegetative alpha-mannosidase activity has properties that are reminiscent of the endoplasmic reticulum alpha-mannosidase from rat liver. The intersecting N-acetylglucosaminyltransferase activity that we have described recently in vegetative cells of D. discoideum (Sharkey, D. J., and Kornfeld, R. (1989) J. Biol. Chem. 264, 10411-10419) has a developmental profile that is distinct from that of either of the alpha-mannosidase activities. It has maximum activity at 6 h of development and decreases sharply to its minimum level by 12 h of development. The changes that occur in the levels of these three processing enzymes with development correlate well with the different arrays of asparagine-linked oligosaccharides found in early and late stages of development (Sharkey, D. J., and Kornfeld, R. (1991) J. Biol. Chem. 266, 18485-18497).  相似文献   

10.
The acquisition of high-level resistance to tubercidin (an adenosine analog) in CHO cells occurs in a single step at high frequency (10(-3) to 10(-4)) without mutagenesis. Analysis of a large number of independent mutants by a fluctuation test (Luria and Delbruk, 1943) indicates that they arise independently of the selection medium and all fall into the same complementation group. All mutants tested lack detectable adenosine kinase activity. An analysis of hybrids between mutant and wild-type cells indicates that resistance to tubercidin is a recessive marker which segregates as would be expected if it were a haploid locus in the parental CHO cell. Resistance to tubercidin is not linked to the X chromosome in CHO cells and appears to occur at much lower frequency in primary Chinese hamster cells and other cultured cell lines.  相似文献   

11.
The spastin protein (SPAST) contains an ATPase with diverse cellular activities (AAA) domain and regulates microtubule dynamics. Missense mutations of the SPAST gene are frequently detected in patients with hereditary spastic paraplegias (HSPs) and represent the main reason of loss of SPAST function; however, the pathogenicity of mutant SPAST is heterogeneous. Here, SPAST variant with an I344K mutation (I344K-SPAST) was identified in a Korean family with autosomal dominant-type HSP. We investigated the role of the I344K-SPAST in HSP to provide a therapeutic mechanism. The I344K-SPAST mutation prolonged the half-life of the protein compared to wild-type SPAST (WT-SPAST) in cells by modulating post-translational modifications for proteasomal degradation. I344K-SPAST was localized in microtubule but defective in microtubule severing and ATPase activity compared to WT-SPAST in vitro and in cells. Mutant M87 isoform harboring the same mutation with I344K-M1 SPAST also increased protein stability and loss of MT severing activity, but the pathogenicity was not stronger than I344K-M1 SPAST in neurite outgrowth. Overexpression of I344K-SPAST resulted in microtubule accumulation following inhibited neurite growth in neuroblastoma, neural progenitor cells and mouse primary cortical neurons. Conversely, these pathogenic effects of I344K-SPAST were reduced by overexpression of WT-M1 SPAST in a dose dependent manner since WT-SPAST could interact with I344K-SPAST. Our data therefore provide proof-of-concept that gene transfer of WT-M1 SPAST may serve as a valid therapeutic option for HSPs.  相似文献   

12.
The CXCR3 chemokine receptor regulates the migration of Th1 lymphocytes and responds to three ligands: CXCL9/MIG, CXCL10/IP-10, and CXCL11/I-TAC. We screened for potential regulation of T cell responses by matrix metalloproteinase (MMP) processing of these important chemokines. The most potent of the CXCR3 ligands, CXCL11, was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry as a substrate of the PMN-specific MMP-8, macrophage-specific MMP-12, and the general leukocyte MMP-9. The 73-amino acid residue CXCL11 is processed at both the amino and carboxyl termini to generate CXCL11-(5-73), -(5-63), and -(5-58) forms. NH2-terminal truncation results in loss of agonistic properties, as shown in calcium mobilization and chemotaxis experiments using CXCR3 transfectants and human T lymphocytes. Moreover, CXCL11-(5-73) is a CXCR3 antagonist and interestingly shows enhanced affinity to heparin. However, upon COOH-terminal truncation to position 58 there is loss of antagonist activity and heparin binding. Together this highlights an unexpected site for receptor interaction and that the carboxyl terminus is critical for glycosaminoglycan binding, an essential function for the formation of chemokine gradients in vivo. Hence, MMP activity might regulate CXCL11 tissue gradients in two ways. First, the potential of CXCL11-(5-73) to compete active CXCL11 from glycosaminoglycans might lead to the formation of an antagonistic haptotactic chemokine gradient. Second, upon further truncation, MMPs disperse the CXCL11 gradients in a novel way by proteolytic loss of a COOH-terminal GAG binding site. Hence, these results reveal potential new roles in down-regulating Th1 lymphocyte chemoattraction through MMP processing of CXCL11.  相似文献   

13.
A codon frameshift mutation caused by a single base (U) insertion after base pair 4088 of prepro alpha 1(I) mRNA of type I procollagen was identified in a baby with lethal perinatal osteogenesis imperfecta. The mutation was identified in fibroblast RNA by a new method that allows the direct detection of mismatched bases by chemical modification and cleavage in heteroduplexes formed between mRNA and control cDNA probes. The region of mismatches was specifically amplified by the polymerase chain reaction and sequenced. The heterozygous mutation in the amplified cDNA most likely resulted from a T insertion in exon 49 of COL1A1. The frameshift resulted in a truncated pro alpha 1(I) carboxyl-terminal propeptide in which the amino acid sequence was abnormal from Val1146 to the carboxyl terminus. The propeptide lacked Asn1187, which normally carries an N-linked oligosaccharide unit, and was more basic than the normal propeptide. The distribution of cysteines was altered and the mutant propeptide was unable to form normal interchain disulfide bonds. Some of the mutant pro alpha 1(I)' chains were incorporated into type I procollagen molecules but resulted in abnormal helix formation with over-hydroxylation of lysine residues, increased degradation, and poor secretion. Only normal type I collagen was incorporated into the extracellular matrix in vivo resulting in a tissue type I collagen content approximately 20% of that of control (Bateman, J. F., Chan, D., Mascara, T., Rogers, J. G., and Cole, W. G. (1986) Biochem. J. 240, 699-708).  相似文献   

14.
A new affinity chromatography adsorbant, in which UDP-GlcNAc has been linked to thiopropyl-Sepharose at the 5 position of the uracil via a 5-mercuri mercaptide bond, was utilized to purify UDP-GlcNAc:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II 60,000-fold from rat liver. After extraction of rat liver membranes with Triton X-100, the enzyme was found to exist in two molecular weight forms of markedly differing size, separable on Sephadex G-200. The low Mr form was separated from the high Mr form on columns of CM-Sephadex and hydroxylapatite, and was further purified by sequential elutions with NaCl, UDP-GlcNAc, and EDTA from the 5-mercuri-UDP-GlcNAc affinity adsorbant. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified low Mr form under reducing conditions revealed two protein bands of Mr 48,000 and 43,000. The purified enzyme catalyzes the transfer of N-acetylglucosamine from UDP-GlcNAc to the compound: (Formula: see text) The high Mr form of the enzyme, which eluted in the void volume of Sephadex G-200, was resistant to a number of treatments in attempts to reduce its molecular weight. These results suggest that the high Mr form of the enzyme may represent either a complex which normally exists in Golgi membranes as a result of strong protein-protein interactions or a protein with one or more "anchor" segments.  相似文献   

15.
16.
The major DNA polymerase activity of wild-type U. maydis has been extensively purified. It possesses a molecular weight of about 150,000 daltons and appears to require a DNA primer with a 3'-hydroxyl terminus as well as a template. The polymerase activity has also been purified from the pol 1-1 strain, which is temperature sensitive fro growth and DNA synthesis, and which at the restrictive temperature contains only 10-25% levels of the DNA polymerase activity obtained from wild-type strains. It was similar in all properties studied, except that the activity was thermolabile at 40 degrees C compared to that from the wild-type strain. Physiological studies on the mutant showed that it was only slightly sensitive to UV, ionising radiation and nitrosoguanidine at the permissive temperature, and was proficient in genetic recombination. The results suggest that the pol 1-1 gene product does not play an important role in repair and recombination processes within the cell, and that its primary function lies in replication.  相似文献   

17.
The proteins CcmA and CcmB have long been known to be essential for cytochrome c maturation in Escherichia coli. We have purified a complex of these proteins, and found it to have ATP hydrolysis activity. CcmA, which has the features of a soluble ATP hydrolysis subunit, is found in a membrane-bound complex only when CcmB is present in the membrane. Mutation of the Walker A motif in CcmA(K40D) results in loss of the in vitro ATPase activity and in loss of cytochrome c biogenesis in vivo. The same mutation does not prevent covalent attachment of heme to the heme chaperone CcmE, but holo-CcmE is, for some unidentified reason, incompetent for heme transfer to an apocytochrome c or for release into the periplasm as a soluble variant. Addition of exogenous heme to heme-permeable E. coli with a ccmA deletion did not restore cytochrome c production. Our results suggest a role for CcmAB in the handling of heme by CcmE, which is chemically complex and involves an unusual histidine-heme covalent bond.  相似文献   

18.
Here we report on the molecular defect that leads to a deficiency of lipoprotein lipase (LPL) activity in a proband of Dutch descent. Southern-blot analysis of the LPL gene from the patient did not reveal any major DNA rearrangements. Sequencing of polymerase-chain-reaction-amplified DNA revealed that the proband is a homozygote for G725C, resulting in a substitution of Pro157 for Arg. This substitution alters a restriction site for PvuII, which allowed rapid identification of the mutant allele in family members. Site-directed mutagenesis and transient expression of the mutant LPL in COS cells produced an enzymatically inactive protein, establishing the functional significance of this mutation. This naturally occurring mutation which alters the Pro157 adjacent to Asp156 of the proposed catalytic triad, indicates that this region of the protein is indeed crucial for LPL catalytic activity.  相似文献   

19.
Weeble mutant mice have severe locomotor instability and significant neuronal loss in the cerebellum and in the hippocampal CA1 field. Genetic mapping was used to localize the mutation to the gene encoding inositol polyphosphate 4-phosphatase type I (Inpp4a), where a single nucleotide deletion results in a likely null allele. The substrates of INPP4A are intermediates in a pathway affecting intracellular Ca(2+) release but are also involved in cell cycle regulation through binding the Akt protooncogene; dysfunction in either may account for the neuronal loss of weeble mice. Although other mutations in phosphoinositide enzymes are associated with synaptic defects without neuronal loss, weeble shows that Inpp4a is critical for the survival of a subset of neurons during postnatal development in mice.  相似文献   

20.
Biosynthesis of RAS1 and RAS2 proteins of Saccharomyces cerevisiae involves processing, fatty acid acylation and transport to plasma membranes. We now report the isolation of a mutant, termed dpr1, defective in these biosynthetic events. The dpr1 cells are temperature sensitive for growth and display sterile phenotype specific to a cells. The following observations were made using cells overproducing the RAS2 protein. (i) In the dpr1 cells, the RAS2 proteins remain as precursors and accumulate in the cytoplasm. (ii) The level of the RAS2 proteins in the plasma membrane of the dpr1 cells is much lower than that in the plasma membrane of wild-type cells. (iii) Fatty acid acylation appears to take place in the dpr1 cells. These results suggest that the major effect of the dpr1 mutation is in the processing of the precursor proteins, but not in their fatty acid acylation. Mutants such as dpr1 should be invaluable for further elucidation of the mechanisms of biosynthesis and transport of the RAS proteins, and presumably also a factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号