首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Li  W Mao  Y Chen  S Ren  X Qi  Y Chen  C Zhao  N Li  C Wang  C Lin  M Yan  J Shan 《Carbohydrate polymers》2012,90(3):1299-1304
Three sulfated rhamno-oligosaccharides, designated O1, O2 and O3, were obtained by mild acid hydrolysis of the sulfated rhamnan and purified by gel-permeation chromatography. On the basis of one- and two-dimensional nuclear magnetic resonance (1D, 2D NMR) spectroscopic analyses, the oligosaccharide O1 was characterized to be α-l-Rhap-(2SO4)-(1→3)-α-l-Rhap. The fragmentation pattern of the homogeneous disaccharide in the product ion spectra was recognized by negative-ion electrospray tandem mass spectrometry with collision-induced dissociation (ES-CID MS/MS). With the principles established, the sequences of the oligosaccharides O2 and O3 were deduced to be α-l-Rhap-(2SO4)-(1→3)-α-l-Rhap-(1→3)-α-l-Rhap, and α-l-Rhap-(2SO4)-(1→3)-α-l-Rhap-(1→3)-α-l-Rhap-(1→3)-α-l-Rhap (2SO(4)), respectively. The investigation demonstrated that the sulfated rhamnan-derived oligosaccharides were novel sulfated oligosaccharides different from those of other polysaccharides-degraded from algae, and it could be possible to determine the sequence of the sulfated rhamno-oligosaccharides directly from the glycosidic cleavage fragmentation in the product ion spectra.  相似文献   

2.
Protection against reinfection with noncapsulated Gram-negative bacteria, such as Shigella, an enteroinvasive bacterium responsible for bacillary dysentery, is mainly achieved by Abs specific for the O-Ag, the polysaccharide part of the LPS, the major bacterial surface Ag. The use of chemically defined glycoconjugates encompassing oligosaccharides mimicking the protective determinants carried by the O-Ag, thus expected to induce an efficient anti-LPS Ab response, has been considered an alternative to detoxified LPS-protein conjugate vaccines. The aim of this study was to identify such functional oligosaccharide mimics of the S. flexneri serotype 2a O-Ag. Using protective murine mAbs specific for S. flexneri serotype 2a and synthetic oligosaccharides designed to analyze the contribution of each sugar residue of the branched pentasaccharide repeating unit of the O-Ag, we demonstrated that the O-Ag exhibited an immunodominant serotype-specific determinant. We also showed that elongating the oligosaccharide sequence improved Ab recognition. From these antigenicity data, selected synthetic oligosaccharides were assessed for their potential to mimic the O-Ag by analyzing their immunogenicity in mice when coupled to tetanus toxoid via single point attachment. Our results demonstrated that induction of an efficient serotype 2a-specific anti-O-Ag Ab response was dependent on the length of the oligosaccharide sequence. A pentadecasaccharide representing three biological repeating units was identified as a potential candidate for further development of a chemically defined glycoconjugate vaccine against S. flexneri 2a infection.  相似文献   

3.
The following structure of the O-polysaccharide of Pragia fontium 27480 was elucidated by sugar analysis, including determination of the absolute configurations of the monosaccharides, and Smith degradation along with 1D and 2D (1)H and (13)C NMR spectroscopy: →4)-β-d-ManpNAc3NAcA-(1→2)-α-l-Rhap-(1→3)-β-l-Rhap-(1→4)-α-d-GlcpNAc-(1→ where ManNAc3NAcA stands for 2,3-diacetamido-2,3-dideoxymannuronic acid.  相似文献   

4.
Shigella flexneri causes more fatalities by shigellosis than any other Shigella species. There are 13 different serotypes of S. flexneri and their distribution varies between endemic geographical regions. The immune response against S. flexneri is serotype-specific, so current immunization strategies have required the administration of multiple vaccine strains to provide protection against multiple serotypes. In this study, we report the construction of a multivalent S. flexneri vaccine strain, SFL1425, expressing the O-antigen structure specific for serotypes 2a and 5a. This combination of type antigens has not previously been reported for S. flexneri. The multivalent vaccine strain, SFL1425 was able to induce a specific immune response against both serotypes 2a and 5a in a mouse pulmonary model.  相似文献   

5.
Bacillus anthracis CDC 684 is a naturally occurring, avirulent variant and close relative of the highly pathogenic B. anthracis Vollum. Bacillus anthracis CDC 684 contains both virulence plasmids, pXO1 and pXO2, yet is non-pathogenic in animal models, prompting closer scrutiny of the molecular basis of attenuation. We structurally characterized the secondary cell wall polysaccharide (SCWP) of B. anthracis CDC 684 (Ba684) using chemical and NMR spectroscopy analysis. The SCWP consists of a HexNAc trisaccharide backbone having identical structure as that of B. anthracis Pasteur, Sterne and Ames, →4)-β-d-ManpNAc-(1?→?4)-β-d-GlcpNAc-(1?→?6)-α-d-GlcpNAc-(1→. Remarkably, although the backbone is fully polymerized, the SCWP is the devoid of all galactosyl side residues, a feature which normally comprises 50% of the glycosyl residues on the highly galactosylated SCWPs from pathogenic strains. This observation highlights the role of defective wall assembly in virulence and indicates that polymerization occurs independently of galactose side residue attachment. Of particular interest, the polymerized Ba684 backbone retains the substoichiometric pyruvate acetal, O-acetate and amino group modifications found on SCWPs from normal B. anthracis strains, and immunofluorescence analysis confirms that SCWP expression coincides with the ability to bind the surface layer homology (SLH) domain containing S-layer protein extractable antigen-1. Pyruvate was previously demonstrated as part of a conserved epitope, mediating SLH-domain protein attachment to the underlying peptidoglycan layer. We find that a single repeating unit, located at the distal (non-reducing) end of the Ba684 SCWP, is structurally modified and that this modification is present in identical manner in the SCWPs of normal B. anthracis strains. These polysaccharides terminate in the sequence: (S)-4,6-O-(1-carboxyethylidene)-β-d-ManpNAc-(1?→?4)-[3-O-acetyl]-β-d-GlcpNAc-(1?→?6)-α-d-GlcpNH(2)-(1→.  相似文献   

6.
Bacteriophage SF6 antigenically converts Shigella flexneri serotype Y strains (-;3,4) to type 3b carrying group antigen 6,3,4 by means of an O-acetylation of the O-antigenic polysaccharide chain. The gene for O-acetyl transferase of bacteriophage SF6 has been cloned, identified and sequenced. The predicted O-acetyl transferase protein encoded by this gene was found to consist of 333 amino acids, (37,185 daltons) and to have some similarity with the galactose-1-phosphate uridylyltransferase protein of Escherichia coli. The gene has been shown to function in a live vaccine strain of S. flexneri Y type (delta aroD), making it a 3b type. The converted type 3b strain, SFL1104, was found to elicit significant protection against challenge by both wild-type serotypes 3b and Y in a guinea-pig keratoconjunctivitis model.  相似文献   

7.
Carbohydrates are likely to maintain significant conformational flexibility in antibody (Ab):carbohydrate complexes. As demonstrated herein for the protective monoclonal Ab (mAb) F22-4 recognizing the Shigella flexneri 2a O-antigen (O-Ag) and numerous synthetic oligosaccharide fragments thereof, the combination of molecular dynamics simulations and nuclear magnetic resonance saturation transfer difference experiments, supported by physicochemical analysis, allows us to determine the binding epitope and its various contributions to affinity without using any modified oligosaccharides. Moreover, the methods used provide insights into ligand flexibility in the complex, thus enabling a better understanding of the Ab affinities observed for a representative set of synthetic O-Ag fragments. Additionally, these complementary pieces of information give evidence to the ability of the studied mAb to recognize internal as well as terminal epitopes of its cognate polysaccharide antigen. Hence, we show that an appropriate combination of computational and experimental methods provides a basis to explore carbohydrate functional mimicry and receptor binding. The strategy may facilitate the design of either ligands or carbohydrate recognition domains, according to needed improvements of the natural carbohydrate:receptor properties.  相似文献   

8.
Listeria monocytogenes serotype 4b strains account for about 40% of sporadic cases and many epidemics of listeriosis. Mutations in a chromosomal locus resulted in loss of reactivity with all three monoclonal antibodies (MAbs) which were specific to serotype 4b and the closely related serotypes 4d and 4e. Here we show that this locus contains a serotype 4b-4d-4e-specific gene cassette (3,071 bp) which consists of two genes, gltA and gltB, and is flanked by palindromic sequences (51 and 44 nucleotides). Complete loss of reactivity with the three serotype-specific MAbs resulted from insertional inactivation of either gltA or gltB. The gltA and gltB mutants were characterized by loss and severe reduction, respectively, of glucose in the teichoic acid, whereas galactose, the other serotype-specific sugar substituent in the teichoic acid, was not affected. Within L. monocytogenes, only strains of serotypes 4b, 4d, and 4e harbored the gltA-gltB cassette, whereas coding sequences on either side of the cassette were conserved among all serotypes. Comparative genomic analysis of a serotype 1/2b strain showed that the 3,071-bp gltA-gltB cassette was replaced by a much shorter (528-bp) and unrelated region, flanked by inverted repeats similar to their counterparts in serotype 4b. These findings indicate that in the evolution of different serotypes of L. monocytogenes, this site in the genome has become occupied by serotype-specific sequences which, in the case of serotype 4b, are essential for expression of serotype-specific surface antigens and presence of glucose substituents in the teichoic acids in the cell wall.  相似文献   

9.
Wan D  Jiao L  Yang H  Liu S 《Planta》2012,235(6):1289-1297
Water-soluble ginseng oligosaccharides (designated as WGOS) with a degree of polymerization ranging from 2 to 10 were obtained from warm-water extract of Panax ginseng roots, and fractionated into five purified fractions (i.e., WGOS-0, WGOS-1, WGOS-2, WGOS-3, and WGOS-4) by gel-filtration chromatography. In order to ascertain the monosaccharide residues in the WGOS, a technique that combines acid hydrolysis and high-performance liquid chromatography was employed. It was found that only glucose residues were present in the WGOS. Fourier transform infrared spectroscopy and electrospray ionization tandem mass spectrometry provided the sequence, linkage, and configuration information. It is noteworthy that α-Glcp-(1?→?6)-α-Glcp, α-Glcp-(1?→?6)-α-Glcp-(1?→?4)-α-Glcp, α-Glcp-(1?→?6)-α-Glcp-(1?→?6)-α-Glcp-(1?→?4)-α-Glcp, and other six malto-oligosaccharides (i.e., maltopentaose, maltohexaose, maltoheptaose, maltooctaose, maltononaose, and maltodecaose) were detected in ginseng. Preliminary immunological tests in vitro indicated that WGOS were potent B and T-cell stimulators and WGOS-1 has the highest immunostimulating effect on lymphocyte proliferation among those purified fractions. It is hoped that the WGOS will be developed into functional food or medicine.  相似文献   

10.
The structure of the repeating unit of the O-antigen polysaccharide from Shigella flexneri provisional serotype 88-893 has been determined. 1H and 13C NMR spectroscopy as well as 2D NMR experiments were employed to elucidate the structure. The carbohydrate part of the hexasaccharide repeating unit is identical to the previously elucidated structure of the O-polysaccharide from S. flexneri prov. serotype Y394. The O-antigen of S. flexneri prov. serotype 88-893 carries 0.7 mol O-acetyl group per repeating unit located at O-2 of the 3-substituted rhamnosyl residue, as identified by H2BC and BS-CT-HMBC NMR experiments. The O-antigen polysaccharide is composed of hexasaccharide repeating units with the following structure: →2)-α-l-Rhap-(1→2)-α-l-Rhap-(1→3)-α-l-Rhap2Ac-(1→3)[α-d-Glcp-(1→2)-α-d-Glcp-(1→4)]-β-d-GlcpNAc-(1→. Serological studies showed that type antigens for the two provisional serotypes are identical; in addition 88-893 expresses S. flexneri group factor 6 antigen. We propose that provisional serotypes Y394 and 88-893 be designated as two new serotypes 7a and 7b, respectively, in the S. flexneri typing scheme.  相似文献   

11.
Serotypes O2, O5, and O16 of Pseudomonas aeruginosa are chemically related, and the O antigens of their lipopolysaccharides share a similar trisaccharide repeat backbone structure. Serotype-specific monoclonal antibodies (MAbs) MF71-3, MF15-4, and MF47-4 against the O2, O5, and O16 serotypes, respectively, were isolated. MAb 18-19, which is cross-reactive with all strains of this chemically related serogroup, was also produced. When column chromatography or sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated lipopolysaccharide (LPS) samples from each of the serotypes were probed with the MAbs in Western immunoblots, each of the serotype-specific MAbs interacted only with high-molecular-weight bands of the homologous LPS, with a minimum O-antigen chain length of at least 6 to 10 repeats. In contrast, cross-reactive MAb 18-19 was shown to interact in Western immunoblots with the entire LPS banding pattern except the fastest-running band, which lacks O antigen. Chemical modification of P. aeruginosa LPS by alkali treatment and carboxyl reduction abolished reactions between LPS and MAb 18-19, while reactions of modified LPS with serotype-specific MAbs were not affected. Therefore, cross-reactive MAb 18-19 likely recognizes the chemical backbone structure of the O repeat that is common to all three serotypes of the O2-O5-O16 group, while the O-specific MAbs appeared to recognize LPS epitopes that could be presented when 6 to 10 or more O-antigen repeat units are present on the LPS molecule. Thus, the O-specific LPS epitopes likely involve unique chemical structures, glycosidic linkages, and some order of folding of the O side chains.  相似文献   

12.
The potential utility of Shigella flexneri aroD vaccine candidates for the development of bi- or multivalent vaccines has been explored by the introduction of the genetic determinants rfp and rfb for heterologous O antigen polysaccharide from Shigella dysenteriae serotype 1. The serotype Y vaccine strain SFL124 expressed the heterologous antigen qualitatively and quantitatively well, qualitatively in the sense of the O antigen polysaccharide being correctly linked to the S. flexneri lipopolysaccharide R3 core oligosaccharide and quantitatively in the sense that typical yields were obtained, with ratios of homologous to heterologous O antigen being 4:1 for one construct and 1:1 for another. Moreover, both polysaccharide chains were shown to be linked to position O-4 of the subterminal D-glucose residue of the R3 core. In contrast to the hybrid serotype Y SFL124 derivatives, analogous derivatives of serotype 2a vaccine strain SFL1070 did not elaborate a complete heterologous O antigen. Such derivatives, and analogous derivatives of rough, O antigen-negative mutants of SFL1070, formed instead a hybrid lipopolysaccharide molecule consisting of the S. flexneri lipid A R3 core with a single repeat unit of the S. dysenteriae type 1 O antigen. Introduction of the determinants for the S. dysenteriae type 1 O antigen into a second serotype 2a strain and into strains representing other serotypes of S. flexneri, revealed the following for the expression of the heterologous O antigen: serotypes 1a, 1b, 2a, and 5a did not produce the heterologous O antigen, whereas serotypes 2b, 3a, 3b, 4a, 4b, 5b, and X did.  相似文献   

13.
Conformational energy computations were carried out on collagenlike triple-stranded conformations of several poly(tripeptide)s with the general structure CH3CO? (Gly? X? Y)3? NHCH3. The sequences considered had various amino acid residues in position X or Y of the central tripeptide, with either Pro or Ala as a neighbor, i.e., Gly-X-Pro, Gly-X-Ala, Gly-Pro-Y, and Gly-Ala-Y. Minimum-energy conformations were computed for the side chains, and their distributions were compared for the four sequences. The residues used were Abu (= α-aminobutyric acid), Leu, Phe, Ser, Asp, Asn, Val, Ile, and Thr. The conformational energy of a ? Ch2? CH3 side chain in Abu was mapped as a function of the dihedral angle χ1. Intrastrand interactions with neighboring residues do not affect the conformations of a side chain in position Y, and they have a minor effect on it in the X-Ala sequence, but they strongly restrict the conformational freedom of the side chain in the X-Pro sequence. Conversely, interstrand interactions do not affect side chains in position X, but they strongly restrict the conformational freedom of a side chain in position Y if there is a nearby Pro residue in a neighboring strand. Hydrogen bonds with the backbone can be formed in some conformations of long polar side chains, such as Asp, Asn, or Gln. All amino acid residues can be accommodated in collagen. Because of the interactions mentioned above, steric and energetic constraints can be correlated with observed preferences of certain amino acids for positions X or Y in collagen. Hence, these preferences may be explained, in part, in terms of differences in the conformational freedom of the side chains in the triple-stranded structure.  相似文献   

14.
Molecular Biology Reports - Novel α-(1?→?3)-glucooligosaccharides (α-(1?→?3)-GOS) were prepared by acid hydrolysis of α-(1→?3)-glucan...  相似文献   

15.
Molecular mechanics and dynamics calculations were carried out on the disaccharides α-L-Rhap-(1 → 2)-α-L-Rhap-(1 → OMe) (1) and α-L-Rhap-(1 → 3)-α-L-Rhap-(1 OMe) (2), and the trisaccharide α-L-Rhap-(1 → 2)-α-L-Rhap-(1 → 3)-α-L-Rhap-(1 → OMe) (3). The semiflexible conformational behavior of these molecules was characterized by the occupation of a combination of different glycosidic linkage and side-chain conformational positions whose relative occupations were sensitive to dielectric screening. Molecular dynamics simulations of the trisaccharide 3 showed little difference between the linkage conformations in the trisaccharide and the component disaccharides 1 and 2. Experimental optical rotation data of 1 and 2 were obtained as a function of temperature in varying solvents. The molecular models were combined with the semiempirical theory of Stevens and Sathyanarayana to yield calculated optical rotations. Interpretation of the data of both 1 and 2 implied that a combination of conformations, both in glycosidic and side-chain positions, could explain the experimental data. Solvents effects were important in influencing the conformational mix and averaged optical rotation. Three-bond heteronuclear coupling constants 3JC, H were obtained for the glycosidic linkages of 1 and 2 in D2O and DMSO. Analysis of the coupling constants with a Karplus curve showed that small reductions in the glycosidic torsion angles of the conformations of the models used here of ca. 10°–15° in ϕ and 5°–10° in ψ were required to give better agreement with experiment; a combination of conformations for both 1 and 2 was consistent with the data. There was a negligible influence on the coupling constants of 1 on changing the solvent from D2O to DMSO. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
α-Galacto-oligosaccharides (α-GOS) are produced by transgalactosylation reactions of α-galactosidase (α-Gal) or by conversion of raffinose family oligosaccharides by levansucrase. Similarly to β-GOS, α-GOS have the potential to mimic glycan receptors on eukaryotic cells and act as molecular decoys to prevent bacterial infection; however, data on transgalactosylation reactions of α-Gal remain scarce. The α-Gal gene sequence from Lactobacillus reuteri was cloned into an α-Gal negative strain of Lactococcus lactis. Transgalactosylation reactions were achieved using crude cell extracts with melibiose or raffinose as galactosyl donor and fucose, N-acetylglucosamine or lactose as galactosyl acceptor. The composition, sequence and most linkage types of α-GOS formed with acceptors saccharides were determined by liquid chromatography-tandem mass spectrometry. α-Gal of Lactobacillus reuteri formed (1?→?3)-, (1?→?4)- or (1?→?6)-linked α-GOS but exhibited a preference for formation of (1?→?6)-linkages. Fucose, N-acetylglucosamine and lactose were suitable galactosyl acceptors for α-Gal of L. reuteri, resulting in formation of (1?→?3)-, (1?→?4)- or (1?→?6)-linked hetero-oligosaccharides. By determining the structural specificity of α-Gal and increasing the variation of oligosaccharides produced by introducing alternative acceptor sugars, this work supports further studies to assess α-GOS pathogen adhesion prevention in mammalian hosts.  相似文献   

17.
O antigen (O polysaccharide) is an important and highly variable cell component present on the surface of cells which defines the serospecificity of Gram-negative bacteria. Most O antigens of Shigella flexneri, a cause of shigellosis, share a backbone composed of →2)-α-l-RhapIII-(1→2)-α-l-RhapII-(1→3)-α-l-RhapI-(1→3)-β-d-GlcpNAc-(1→ repeats, which can be modified by adding various substituents, giving rise to 19 serotypes. The known modifications include glucosylation on various sugar residues, O-acetylation on RhaI, and phosphorylation with phosphoethanolamine on RhaII or/and RhaIII. Recently, two new O-antigen modifications, namely, O-acetylation at position 3 or 4 of RhaIII and position 6 of GlcNAc, have been identified in several S. flexneri serotypes. In this work, the genetic basis for the 3/4-O-acetylation on RhaIII was elucidated. Bioinformatic analysis of the genome of S. flexneri serotype 2a strain Sf301, which carries 3/4-O-acetylation on RhaIII, revealed an O-acyltransferase gene designated oacB. Genetic studies combined with O-antigen structure analysis demonstrated that this gene is responsible for the 3/4-O-acetylation in serotypes 1a, 1b, 2a, 5a, and Y but not serotype 6, which has a different O-antigen backbone structure. The oacB gene is carried by a transposon-like structure located in the proA-adrA region on the chromosome, which represents a novel mechanism of mobilization of O-antigen modification factors in S. flexneri. These findings enhance our knowledge of S. flexneri O-antigen modifications and shed light on the origin of new O-antigen variants.  相似文献   

18.
Acidic polysaccharides are attractive functional ingredients in shellfish which are consumed as delicious and nutritious foods world widely. In the present study, acidic polysaccharides from 21 species of edible shellfish were characterized and quantified by analyzing their repeated disaccharides using the multiple reaction monitoring (MRM) mode of triple quadrupole mass spectrometer upon acid degradation and 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization. A total of 6 glycosaminoglycans (GAGs) and 8 non-GAGs with repeated disaccharide units of a hexuronic acid linked to a hexosamine or a hexose were detected. Among them, chondroitin sulfate, heparin, →4)-β-GlcA-(1?→?2)-α-Man-(1?→?and →3)- β-GlcA-(1?→?3)-α-Gal-(1?→?were identified unambiguously by comparing with the references. The quantification results revealed that the contents of these polysaccharide varied greatly among shellfish species with a maximum over 100 mg/100 g. Furthermore, the dendrogram of hierarchical clustering analysis indicated that the composition of acidic polysaccharides in some shellfish species was related with the genetic relationship. Thus, the present study provides a more comprehensive knowledge about the distribution of acidic polysaccharides in various shellfish species.  相似文献   

19.
We report here the synthesis and molecular structure in the solid state of fully protected tripeptides containing Cα,α-diphenylglycine (Dph), namely Z-Aib-Dph-Gly-OMe (Aib: Cα,α-dimethylgrycine) and Bz-Dph-Dph-Gly-OMe. The molecular conformation around the Dph residue, containing two bulky substituents, is fully extended, while the Aib residue, containing two smaller groups on the Cα atom, adopts the typical 310/α-helical conformation. Gly residues, without substituents on the Cα atom, show different conformational preferences. Each residue seems to behave, from a conformational point of view, independently from the presence of the other residues, and thus mixed local conformations (folded and extended) are present in the crystals. The nonconventional peptide synthesis, using the Ugi reaction, is also reported. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The effect of side-chain cyclization on accessible backbone conformations of tripeptides, X-Ala-Y (X and/or Y = Cys, Hcy (Hcy: homocysteine), cis 4-mercaptoproline (MPc), and trans 4-mercaptoproline (MPt)), was elucidated using two variants of systematic conformational search. In addition to cyclization through a disulfide bond, the thioether (-S-CH2-) and amide (-CO-NH-) side-chain analogues of Cys-Ala-Cys and Hcy-Ala-Hcy were evaluated. The number of valid backbone conformations and the allowed phi, psi space were evaluated for each compound, and the ability of the cyclic tripeptides to accommodate beta-turn conformations was examined in order to assess the value of cyclization in limiting conformational freedom. Based on the number of conformations, cyclization was highly effective in reducing the backbone degree of freedom: in order of decreasing number of conformations, Ala-Ala-Ala 1 > Hcy-Ala-Hcy 2 > Cys-Ala-Hcy 3 approximately equal to Hcy-Ala-Cys 4 > MPc-Ala-Hcy 5, 7 > Cys-Ala-Cys 6 > MPc-Ala-Cys 8 > Hcy-Ala-MPt 9 > Cys-Ala-MPt 10 approximately equal to MPc-Ala-MPt 11. Although Hcy-Ala-Hcy 2 had the greatest number of conformations of the cyclic peptides studied, it was still greatly constrained relative to its linear analogue 1. The bicyclic ring system introduced by MP was even more effective in constraining the cycle, having greater impact at position 3 than at position 1. Under the conditions of the study, cyclization of MP-containing analogues could be effected only with the cis isomer (MPc) at position 1 and/or the trans isomer (MPt) at position 3. Sterically allowed conformations of Ala2 for the cyclic tripeptides 2-4 were generally similar to those of the linear tripeptide 1, while those of Cys-Ala-Cys 6 and MPc-Ala-Hcy 7 were restricted to a smaller region of phi 2, psi 2 space: the right- and left-handed alpha-helical conformation and the beta-conformation. This trend was even more pronounced for Hcy-Ala-MPt 9, Cys-Ala-MPt 10, and MPc-Ala-MPt 11, in which Ala2 was severely restricted to a very small region of phi, psi space: the left-handed alpha-helical conformation for 9-11, plus the beta conformation for 9. This suggests that MP at the 3-position is incompatible with a right-handed alpha-helical conformation at position 2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号