首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
NKX3.1 is a prostate-specific homeobox gene related to prostate development and prostate cancer. In this work, we aimed to identify precisely the functional cis-element in the 197 bp region (from -1032 to -836 bp) of the NKX3.1 promoter (from -1032 to +8 bp), which was previously identified to present positive regulatory activity on NKX3.1 expression, by deletion mutagenesis analysis and electrophoretic mobility shift assay (EMSA). A 16 bp positive cis-element located between -920 and -905 bp upstream of the NKX3.1 gene was identified by deletion mutation analysis and proved to be a functional positive cis-element by EMSA. It will be important to further study the functions and regulatory mechanisms of this positive cis-element in NKX3.1 gene expression.  相似文献   

8.
The major cytochrome P450 in the yeast Saccharomyces cerevisiae, lanosterol 14 alpha-demethylase (ERG11), catalyzes an essential reaction in the biosynthesis of ergosterol, the predominant sterol of yeast. Protein levels of this cytochrome P450 are known to be affected by carbon source, oxygen, and heme, as well as the growth state of the culture. We have determined that ERG11 message levels increase during growth on glucose, in the presence of heme, and during oxygen limiting growth conditions and, unexpectedly, during anaerobic growth. To determine the cis-acting regions responsible for regulation of expression of the ERG11 promoter under optimal conditions of fermentative growth, deletion analysis was performed using the Escherichia coli lacZ as a reporter gene. Two upstream activating sequences, UAS1 and UAS2, and an upstream repressor element, URS1, plus a second possible or cryptic repressor element, URS2, were identified in the ERG11 promoter. The HAP1 protein product apparently participates in activation from UAS1 but not from UAS2. Sequences resembling ERG11 UAS2 were identified in seven additional oxygen-regulated genes. Repression of ERG11 expression was dependent upon the ROX1 repressor and additional repressor(s) designated as Old (overexpression of lanosterol demethylase). These data indicate that ERG11 is a member of the hypoxic gene family which includes ANB1, COX5b, CYC7, and HEM13. Furthermore, NADPH-cytochrome P450 reductase (CPR1), another component in this P450 system, appears to be coordinately regulated with ERG11.  相似文献   

9.
Cis-acting CCAAT elements are frequently found in eukaryotic promoter regions. Many of them are bound by conserved multimeric complexes. In the fungus Aspergillus nidulans the respective complex was designated AnCF (A. nidulans CCAAT binding factor). AnCF is composed of at least three subunits designated HapB, HapC and HapE. Here, we show that the promoter regions of the hapB genes in both A. nidulans and Aspergillus oryzae contain two inversely oriented, conserved CCAAT boxes (box alpha and box beta). Electrophoretic mobility shift assays (EMSAs) using both nuclear extracts and the purified, reconstituted AnCF complex indicated that AnCF binding in vitro to these boxes occurs in a non-mutually exclusive manner. Western and Northern blot analyses showed that steady-state levels of HapB protein as well as hapB mRNA were elevated in hapC and hapE deletion mutants, suggesting a repressing effect of AnCF on hapB expression. Consistently, in a hapB deletion background the hapB-lacZ expression level was elevated compared with the expression in the wild-type. This was further supported by overexpression of hapB using an inducible alcA-hapB construct. Induction of alcA-hapB expression strongly repressed the expression of a hapB-lacZ gene fusion. However, mutagenesis of box beta led to a fivefold reduced expression of a hapB-lacZ gene fusion compared with the expression derived from a wild-type hapB-lacZ fusion. These results indicate that (i) box beta is an important positive cis-acting element in hapB regulation, (ii) AnCF does not represent the corresponding positive trans-acting factor and (iii) that AnCF is involved in repression of hapB.  相似文献   

10.
11.
12.
13.
14.
The sacR regulatory region, which modulates the expression of sacB, the structural gene for levansucrase, was separated into two parts: an upstream region which carries a constitutive promoter and a downstream region which carries a palindromic structure. Three types of fusions were constructed in which the aphA3 gene coding for kanamycin resistance of Streptococcus faecalis was placed downstream from different deleted sacR regions. Other fusions were constructed by inserting a promoter from phage SPO1 upstream from the sacB gene and part of the sacA region. A third kind of fusion was constructed in which the palindromic structure was flanked by a heterologous promoter and a heterologous structural gene. After introduction of these fusions into the chromosomal DNA of mutants affected in sacB regulation, it was possible to reveal different targets for the regulatory genes sacU, sacQ and sacS: the sacU and sacQ genes act on a region located near or just upstream from the promoter, and the sacS gene, which is involved in the induction process, acts on the palindromic structure.  相似文献   

15.
16.
The expression of yeast genes encoding gluconeogenic enzymes depends strictly on the carbon source available in the growth medium. We have characterized the control region of the isocitrate lyase gene ICL1, which is derepressed more than 200-fold after transfer of cells from fermentative to nonfermentative growth conditions. Deletion analysis of the ICL1 promoter led to the identification of an upstream activating sequence element, UASICL1 (5' CATTCATCCG 3'), necessary and sufficient for conferring carbon source-dependent regulation on a heterologous reporter gene. Similar sequence motifs were also found in the upstream regions of coregulated genes involved in gluconeogenesis. This carbon source-responsive element (CSRE) interacts with a protein factor, designated Ang1 (activator of nonfermentative growth), detectable only in extracts derived from derepressed cells. Gene activation mediated by the CSRE requires the positively acting derepression genes CAT1 (= SNF1 and CCR1) and CAT3 (= SNF4). In the respective mutants, Ang1-CSRE interaction was no longer observed under repressing or derepressing conditions. Since binding of Ang1 factor to the CSRE could be competed for by an upstream sequence derived from the fructose-1,6-bisphosphatase gene FBP1, we propose that the CSRE functions as a UAS element common to genes of the gluconeogenic pathway.  相似文献   

17.
18.
EcoRII Methyltransferase (M.EcoRII) which methylates the second C in the sequence CCWGG (W = A/T) is autogenously regulated by binding to the 5' regulatory region of its gene. DNase I footprinting experiments demonstrated that purified M.EcoRII protected a 47-49 bp region of DNA immediately upstream of the ecoRIIM coding region. We have studied this interaction with mutants of the enzyme, in vitro by DNA binding and in vivo by investigating the repression in trans of expression of beta-galactosidase from an ecoRIIM-lacZ operon fusion. Two catalytically active mutants failed to repress expression of the fusion whereas catalytically inactive mutants had repressor activity. However, with one of the catalytically inactive mutants, C186S, in which the catalytic Cys was replaced with Ser, and which bound unmethylated CCWGG sequences, repression could only be demonstrated when those sequences in cellular DNA were methylated by supplying a cloned dcm gene in trans. In vitro binding of the DNA fragment containing the ecoRIIM regulatory region was detected only with the mutants that showed repressor activity, including C186S. Results indicate that down-regulation of the gene in vivo and binding to the promoter in vitro are not dependent on the catalytic properties of M.EcoRII. Mobility shift experiments with C186S also revealed that it could bind either the promoter or unmethylated CCWGG sites, but not both. We conclude that the concentration of unmethylated CCWGG sites controls expression from the ecoRIIM promoter.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号