首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of Ca2+ release and contraction induced by photolytic release of inositol 1,4,5-trisphosphate (InsP3) were determined in permeabilized smooth muscle. The rate of Ca2+ release was half-maximal at 1 microM InsP3. The concentration-dependent delay of Ca2+ release at saturating InsP3 concentration was approximately 10 ms and within the uncertainty of the measurements. The relationship between the delay and InsP3 concentration showed no evidence of a high level (n = 4 or higher) of cooperativity but could not distinguish between no cooperativity (n = 1) or a low level (n = 2) of cooperativity. Submaximal [InsP3] caused only partial Ca2+ release from the InsP3-sensitive stores. InsP3-induced Ca2+ release was markedly potentiated by ATP or by adenosine 5'-(beta,gamma-methylene-triphosphate), but neither the rate nor the amplitude of release was significantly affected by procaine (2-5 mM). Heparin increased the delay between photolysis and Ca2+ release, indicating that the off rate of inert ligand(s) bound to InsP3 receptors may contribute to the physiological delay in Ca2+ release. There was a much longer (370 ms +/- 45 S.E.) delay between the rise of Ca2+ and force development, presumably reflecting events preceding and associated with myosin light chain phosphorylation.  相似文献   

2.
We applied the quick-freezing technique to investigate the precise temporal coincidence between the onset of quantal secretion and the appearance of fusions of synaptic vesicles with the prejunctional membrane. Frog cutaneous pectoris nerve-muscle preparations were soaked in modified Ringer's solution with 1 mM 4-aminopyridine, 10 mM Ca2+, and 10(-4) M d-Tubocurarine and quick-frozen 1-10 ms after a single supramaximal shock. The frozen muscles were then either freeze-fractured or cryosubstituted in acetone with 13% OsO4 and processed for thin section electron microscopy. Temporal resolution of less than 1 ms can be achieved using a quick-freeze device that increases the rate of freezing of the muscle after it strikes the chilled copper block (15 degrees K) and that minimizes the precooling of the muscle during its descent toward the block. We minimized variations in transmission time by examining thin sections taken only from the medial edge of the muscle, which was at a fixed distance from the point of stimulation of the nerve. The ultrastructure of the cryosubstituted preparations was well preserved to a depth of 5 - 10 micron, and within this narrow band vesicles were found fused with the axolemma after a minimum delay of 2.5 ms after stimulation of the nerve. Since the total transmission time to this edge of the muscle was approximately 3 ms, these results indicate that the vesicles fuse with the axolemma precisely at the same time the quanta are released. Freeze-fracture does not seem to be an adequate experimental technique for this work because in the well-preserved band of the muscle the fracture plane crosses, but does not cleave, the inner hydrophobic domain of the plasmalemma. Fracture faces may form in deeper regions of the muscle where tissue preservation is unsatisfactory and freezing is delayed.  相似文献   

3.
4.
In airway smooth muscle (ASM), ACh induces propagating intracellular Ca2+ concentration ([Ca2+]i) oscillations (5-30 Hz). We hypothesized that, in ASM, coupling of elevations and reductions in [Ca2+]i to force generation and relaxation (excitation-contraction coupling) is slower than ACh-induced [Ca2+]i oscillations, leading to stable force generation. When we used real-time confocal imaging, the delay between elevated [Ca2+]i and contraction in intact porcine ASM cells was found to be approximately 450 ms. In beta-escin-permeabilized ASM strips, photolytic release of caged Ca2+ resulted in force generation after approximately 800 ms. When calmodulin (CaM) was added, this delay was shortened to approximately 500 ms. In the presence of exogenous CaM and 100 microM Ca2+, photolytic release of caged ATP led to force generation after approximately 80 ms. These results indicated significant delays due to CaM mobilization and Ca2+-CaM activation of myosin light chain kinase but much shorter delays introduced by myosin light chain kinase-induced phosphorylation of the regulatory myosin light chain MLC20 and cross-bridge recruitment. This was confirmed by prior thiophosphorylation of MLC20, in which force generation occurred approximately 50 ms after photolytic release of caged ATP, approximating the delay introduced by cross-bridge recruitment alone. The time required to reach maximum steady-state force was >15 s. Rapid chelation of [Ca2+]i after photolytic release of caged diazo-2 resulted in relaxation after a delay of approximately 1.2 s and 50% reduction in force after approximately 57 s. We conclude that in ASM cells agonist-induced [Ca2+]i oscillations are temporally and spatially integrated during excitation-contraction coupling, resulting in stable force production.  相似文献   

5.
In contraction of skeletal muscle a delay exists between the onset of electrical activity and measurable tension. This delay in electromechanical coupling has been stated to be between 30 and 100 ms. Thus, in rapid movements it may be possible for electromyographic (EMG) activity to have terminated before force can be detected. This study was designed to determine the dependence of the EMG-tension delay upon selected initial conditions at the time of muscle activation. The right forearms of 14 subjects were passively oscillated by a motor-driven dynamometer through flexion-extension cycles of 135 deg at an angular velocity of approximately equal to 0.5 rad/s. Upon presentation of a visual stimulus the subjects maximally contracted the relaxed elbow flexors during flexion, extension, and under isometric conditions. The muscle length at the time of the stimulus was the same in all three conditions. An on-line computer monitoring surface EMG (Biceps and Brachioradialis) and force calculated the electromechanical delay. The mean value for the delay under eccentric condition, 49.5 ms, was significantly different (p less than 0.05) from the delays during isometric (53.9 ms) and concentric activity (55.5 ms). It is suggested that the time required to stretch the series elastic component (SEC) represents the major portion of the measured delay and that during eccentric muscle activity the SEC is in a more favorable condition for rapid force development.  相似文献   

6.
Biochemical events associated with activation of smooth muscle contraction   总被引:4,自引:0,他引:4  
Biochemical events associated with activation of smooth muscle contraction were studied in neurally stimulated bovine tracheal smooth muscle. A latency period of 500 ms preceded increases in isometric force and myosin light chain phosphorylation. However, stimulation resulted in the rapid hydrolysis of inositol phospholipids as demonstrated by increases in inositol phosphates by 500 ms. Inositol trisphosphate increased 2-fold with no significant change in inositol tetrakisphosphate. The apparent activation state of myosin light chain kinase was assessed indirectly through measurements of the fractional activation of a second calmodulin-dependent enzyme, cyclic nucleotide phosphodiesterase. The fractional activation of cyclic nucleotide phosphodiesterase increased after neural stimulation to a maximal extent by 500 ms and remained at this level for at least 4 s. The monophosphorylation of myosin light chain increased after 500 ms and reached a maximum value by 2 s. Diphosphorylation also occurred but to a much lesser extent. Fractional activation of cyclic nucleotide phosphodiesterase and myosin light chain phosphorylation both decreased after 10 min continuous stimulation, although the force response remained at a maximal level. These observations demonstrate that inositol trisphosphate formation and activation of cyclic nucleotide phosphodiesterase (and hence most likely myosin light chain kinase) by calmodulin precede myosin light chain phosphorylation and that these events are sufficiently rapid to mediate the contractile response of neurally stimulated tracheal smooth muscle.  相似文献   

7.
Cell calcium and its regulation in smooth muscle   总被引:22,自引:0,他引:22  
A P Somlyo  B Himpens 《FASEB journal》1989,3(11):2266-2276
Two novel methods used to study smooth muscles-electron probe X-ray microanalysis and Ca2+-sensitive indicators (which are used for resolving, respectively, the spatial distribution and temporal distribution of calcium)-are briefly reviewed and the major findings obtained are summarized. In smooth muscle the sarcoplasmic reticulum is the major intracellular source of Ca2+; mitochondria do not play a significant role in the physiological regulation of [Ca2+]i. Under pathological conditions mitochondria can reversibly accumulate large amounts of calcium. Resting [Ca2+]i generally ranges from 80 to 200 nM, and is lower in phasic than in tonic smooth muscles. Removal of extracellular Ca2+ and Ca2+ entry blockers can reduce [Ca2+]i, but the effects of beta-adrenergic agents are variable. Increases in [Ca2+]i are triggered by electrical stimulation, depolarization with high K+, and excitatory agonists. Stretch, after a delay of several seconds, can cause an increase in [Ca2+]i in some smooth muscles. There is also a delay of approximately 200-400 ms between the initiation of the rise of Ca2+ and contraction that follows spontaneous action potentials or electrical stimulation. Agonist-induced Ca2+ release, a major mechanism of pharmacomechanical coupling, has been demonstrated in smooth muscles depolarized with high K; evidence suggests that it is mediated by G proteins that couple receptors to phospholipase C. Ca2+ release can be triggered directly in permeabilized smooth muscle with inositol 1,4,5-trisphosphate. Even though Ca2+ is the major physiological regulator of contraction, Ca2+ sensitivity of the regulatory-contractile apparatus differs in different (phasic and tonic) smooth muscles, and can be modulated in a given smooth muscle. The force [Ca2+]i ratio is higher during agonist-stimulated than during high K+-induced contractions, owing to agonist-induced increases in Ca2+ sensitivity mediated by G proteins. In some phasic smooth muscles (guinea pig ileum), the time course of the initial myosin light chain phosphorylation is extremely rapid and returns to basal levels while force remains elevated. In these smooth muscles there is also a marked decrease in the Ca2+ sensitivity of the regulatory-contractile apparatus during maintained depolarization in Ca2+-free or low Ca2+ solutions. It has been suggested that regulation of myosin light chain phosphatase plays a major role in the modulation of the Ca2+ sensitivity manifested as either potentiation or desensitization to [Ca2+]i.  相似文献   

8.
Cylindrical specimens (50 mm diameter and 160 mm length) of fresh pork muscle (boneless rib portions) packed in plastic bags were frozen by pressure shift freezing (PSF) at 100, 150, and 200 MPa, air blast freezing (ABF), and liquid immersion freezing (LIF). Temperature and phase transformations of the muscle tissue were monitored during the freezing process at three locations: center, midway between the center and the surface, and near the surface. Pork muscle quality changes [color, drip loss (both thawing and cooking), texture (shear force), and protein stability (DSC thermal profiles)] were evaluated after thawing the frozen samples at room temperature (20 degrees C). Employing pressures above 150 MPa caused very significant (P < 0.01) color changes in pork muscle during the PSF process. The PSF process reduced thawing drip loss of pork muscle but did not cause obvious changes in total drip loss following thawing and subsequent cooking. PSF at 150 and 200 MPa resulted in considerable denaturation of myofibrillar proteins of pork muscle. The PSF process also caused an increase in the pork muscle toughness as compared with that of unfrozen, ABF, and LIF samples.  相似文献   

9.
The Ca2+-sensitive photoprotein aequorin and the Ca2+-dependent fluorescent indicators quin 2 and TnCDANZ have been used to investigate contractile processes in single crustacean muscle fibres. The investigations with quin 2 indicate that the free Ca2+ rises to a maximum value before peak force as with aequorin light (approximately 200 msec delay at 12 degrees C) and subsequently decays more slowly, unlike the majority of the aequorin signal, although an aequorin 'tail' signal remains. The resting quin 2 fluorescence from the cell suggests an upper limit of 348 nM for the resting calcium concentration. Experiments with TnCDANZ indicate that this fluorescence response rises rapidly but then the rate of rise slows to reach a maximum value at a time when peak force is achieved and then the fluorescence signal decays more slowly than force. The latter result implies that Ca2+ is attached to the Ca2+-specific sites of TnC when externally recorded force is small.  相似文献   

10.
We applied a fast concentration jump system to produce step changes in Ca2+ concentration [( Ca2+]i) on the cytoplasmic side of the inside-out membrane patch, excised from isolated rat hippocampal pyramidal neurons, and examined the time course of the activation phase of the large-conductance K channel (the BK channel; approximately 266 pS) after a step rise in [Ca2+]i. Diffusion of Ca2+ from the electrode tip to the cytoplasmic surface of the patch was estimated to be almost completed in 10 ms. After a step increase in [Ca2+]i from 0.04 to 3.2-1,000 microM, the activation of the K channel started after a clear latency of 280-18 ms and proceeded along a sigmoidal function. This was in sharp contrast with the rapid deactivation that began without delay and that was completed within 50 ms. The latency in activation was not accounted for by the binding of Ca2+ to EGTA in unstirred layers in the patch, since this binding was reported to be slow, taking up to seconds at physiological pH. Calmodulin (1 microM) did not affect the delay, the activation rate, or the steady-state current level. The calmodulin inhibitors W-7 and W-5 caused flickering of the single-channel current. These results indicate a delayed activation of the BK channel after a step rise in [Ca2+]i, suggesting that the BK current does not contribute to the repolarization of the action potential. Calmodulin is probably not involved in the activation process of the channel.  相似文献   

11.
The subsecond mobilization of intracellular Ca2+ by IP3 was measured with rapid mixing techniques to determine how cells achieve rapid rises in cytosolic [Ca2+] during receptor-triggered calcium spiking. In permeabilized rat basophilic leukemia cells at 11 degrees C, more than 80% of the 0.7 fmol of Ca2+/cell sequestered by the ATP-driven pump could be released by IP3. Half of the stored Ca2+ was released within 200 ms after addition of saturating (1 microM) IP3. The flux rate was half-maximal at 120 nM IP3. Ca2+ release from fully loaded stores was highly cooperative; the Hill coefficient over the 2-40 nM range was greater than 3. The delay time of channel opening was inversely proportional to [IP3], increasing from 150 ms at 100 nM IP3 to 1 s at 15 nM, indicating that the rate-limiting step in channel opening is IP3 binding. Multiple binding steps are required to account for the observed delay and nonexponential character of channel opening. A simple model is proposed in which the binding of four IP3 molecules to identical and independent sites leads to channel opening. The model agrees well with the data for KD = 18 nM, kon = 1.2 X 10(8) M-1 s-1, and koff = 2.2 s-1. The approximately 1-s exchange time of bound IP3 indicates that the channel gating sites are distinct from binding sites having approximately 100-s exchange times that were previously found with radiolabeled IP3. The approximately 1-1s response time of [Ca2+] to a rapid increase in IP3 level can account for observed rise times of calcium spikes.  相似文献   

12.
The time course of structural changes occurring on ATP-induced relaxation of glycerinated insect flight muscle from the rigor state has been investigated using synchrotron radiation as a source of high intensity x rays and photolysis of caged-ATP to produce a rapid rise in ATP concentration. Temporal resolutions of 1 ms for the strongest equatorial reflections and 5 ms for the 14.5 nm meridional reflection are attainable from single events (i.e., without averaging over several cycles). The equatorial intensity changes completely, the meridional intensity partially, towards their respective relaxed values on a much faster time scale than relaxation of tension. The results suggest that actively cycling bridges present shortly after ATP-release are either too few in number to be detected in the equatorial diffraction pattern or that their structure is different from that of rigor bridges.  相似文献   

13.
Temperature dependence of the isometric tension was examined in chemically skinned, glycerinated, rabbit Psoas, muscle fibers immersed in relaxing solution (pH approximately 7.1 at 20 degrees C, pCa approximately 8, ionic strength 200 mM); the average rate of heating/cooling was 0.5-1 degree C/s. The resting tension increased reversibly with temperature (5-42 degrees C); the tension increase was slight in warming to approximately 25 degrees C (a linear thermal contraction, -alpha, of approximately 0.1%/degree C) but became more pronounced above approximately 30 degrees C (similar behavior was seen in intact rat muscle fibers). The extra tension rise at the high temperatures was depressed in acidic pH and in the presence of 10 mM inorganic phosphate; it was absent in rigor fibers in which the tension decreased with heating (a linear thermal expansion, alpha, of approximately 4 x 10(-5)/degree C). Below approximately 20 degrees C, the tension response after a approximately 1% length increase (complete < 0.5 ms) consisted of a fast decay (approximately 150.s-1 at 20 degrees C) and a slow decay (approximately 10.s-1) of tension. The rate of fast decay increased with temperature (Q10 approximately 2.4); at 35-40 degrees C, it was approximately 800.s-1, and it was followed by a delayed tension rise (stretch-activation) at 30-40.s-1. The linear rise of passive tension in warming to approximately 25 degrees C may be due to increase of thermal stress in titin (connectin)-myosin composite filament, whereas the extra tension above approximately 30 degrees C may arise from cycling cross-bridges; based on previous findings from regulated actomyosin in solution (Fuchs, 1975), it is suggested that heating reversibly inactivates the troponin-tropomyosin control mechanism and leads to Ca-independent thin filament activation at high temperatures. Additionally, we propose that the heating-induced increase of endo-sarcomeric stress within titin-myosin composite filament makes the cross-bridge mechanism stretch-sensitive at high temperatures.  相似文献   

14.
Serine 19 phosphorylation of the myosin regulatory light chain (MRLC) appears to be the primary determinant of smooth muscle force development. The relationship between MRLC phosphorylation and force is nonlinear, showing that phosphorylation is not a simple switch regulating the number of cycling cross bridges. We reexamined the MRLC phosphorylation-force relationship in slow, tonic swine carotid media; fast, phasic rabbit urinary bladder detrusor; and very fast, tonic rat anococcygeus. We found a sigmoidal dependence of force on MRLC phosphorylation in all three tissues with a threshold for force development of approximately 0.15 mol P(i)/mol MRLC. This behavior suggests that force is regulated in a highly cooperative manner. We then determined whether a model that employs both the latch-bridge hypothesis and cooperative activation could reproduce the relationship between Ser(19)-MRLC phosphorylation and force without the need for a second regulatory system. We based this model on skeletal muscle in which attached cross bridges cooperatively activate thin filaments to facilitate cross-bridge attachment. We found that such a model describes both the steady-state and time-course relationship between Ser(19)-MRLC phosphorylation and force. The model required both cooperative activation and latch-bridge formation to predict force. The best fit of the model occurred when binding of a cross bridge cooperatively activated seven myosin binding sites on the thin filament. This result suggests cooperative mechanisms analogous to skeletal muscle that will require testing.  相似文献   

15.
To better understand excitation-contraction coupling in smooth muscle, myosin phosphorylation and force-velocity properties of canine tracheal muscle were compared during the rise and early plateau of force in electrically stimulated tetani. Velocity reached a peak of approximately 1.5 times plateau value when force had risen to approximately 45% of its maximum value and then declined progressively. Except early in the tetanus, when phosphorylation rose rapidly, maximum power and phosphorylation had nearly parallel time courses, reaching peaks of 1.2-1.3 times reference at 6-8 s before declining to the plateau level at approximately 12 s. Force, velocity, maximum power, and phosphorylation fell somewhat during the plateau, with the closest correlation between phosphorylation and power. These results suggest that 1) early velocity slowing is not associated with light chain dephosphorylation and 2) maximum power, which we use to signal changes in activation, is closely correlated with the degree of light chain phosphorylation, at least when phosphorylation level is not changing rapidly. Dissociation of these two properties would be expected early in the tetanus if phosphorylation precedes mechanical activity.  相似文献   

16.
A novel calcium current in dysgenic skeletal muscle   总被引:9,自引:3,他引:6       下载免费PDF全文
The whole-cell patch-clamp technique was used to study voltage-dependent calcium currents in primary cultures of myotubes and in freshly dissociated skeletal muscle from normal and dysgenic mice. In addition to the transient, dihydropyridine (DHP)-insensitive calcium current previously described, a maintained DHP-sensitive calcium current was found in dysgenic skeletal muscle. This current, here termed ICa-dys, is largest in acutely dissociated fetal or neonatal dysgenic muscle and also in dysgenic myotubes grown on a substrate of killed fibroblasts. In dysgenic myotubes grown on untreated plastic culture dishes, ICa-dys is usually so small that it cannot be detected. In addition, ICa-dys is apparently absent from normal skeletal muscle. From a holding potential of -80 mV. ICa-dys becomes apparent for test pulses to approximately -20 mV and peaks at approximately +20 mV. The current activates rapidly (rise time approximately 5 ms at 20 degrees C) and with 10 mM Ca as charge carrier inactivates little or not at all during a 200-ms test pulse. Thus, ICa-dys activates much faster than the slowly activating calcium current of normal skeletal muscle and does not display Ca-dependent inactivation like the cardiac L-type calcium current. Substituting Ba for Ca as the charge carrier doubles the size of ICa-dys without altering its kinetics. ICa-dys is approximately 75% blocked by 100 nM (+)-PN 200-110 and is increased about threefold by 500 nM racemic Bay K 8644. The very high sensitivity of ICa-dys to these DHP compounds distinguishes it from neuronal L-type calcium current and from the calcium currents of normal skeletal muscle. ICa-dys may represent a calcium channel that is normally not expressed in skeletal muscle, or a mutated form of the skeletal muscle slow calcium channel.  相似文献   

17.
Cyclic nucleotide can relax arterial smooth muscle without reductions in myosin regulatory light chain (MRLC) phosphorylation, a process termed force suppression. Smooth muscle contractile force also depends on tissue length. It is not known how tissue length affects force suppression. Swine carotid artery rings were equilibrated at various lengths (as a fraction of L(o), the optimal length for force development). They were then frozen during contractile activation with or without forskolin-induced relaxation. Frozen tissue homogenates were then analyzed for Ser(19)-MRLC phosphorylation and Ser(16)-heat shock protein 20 (HSP20) phosphorylation (HSP20 is the proposed mediator of force suppression). Higher values of MRLC phosphorylation were required to induce a histamine contraction at longer tissue lengths. At 1.4 L(o), the dependence of force on MRLC phosphorylation observed with histamine stimulation alone was shifted to the right, a response similar to that observed during force suppression at 1.0 L(o). The rightward shift in the dependence of force on MRLC phosphorylation seen with histamine stimulation alone at 1.4 L(o) was not associated with increased HSP20 phosphorylation. Addition of forskolin to histamine-stimulated tissues at 1.4 L(o) induced a relaxation associated with increased HSP20 phosphorylation and reduced MRLC phosphorylation, i.e., there was no additional force suppression. At shorter tissue lengths (0.6 L(o)), the dependence of force on MRLC phosphorylation with histamine stimulation alone was steep, a response similar to that observed during normal contractile activation at 1.0 L(o). Addition of forskolin induced force suppression at 0.6 L(o). The sensitivity of swine carotid to the concentration of histamine was greater at longer tissue lengths compared with shorter tissue lengths, suggesting a physiological mechanism to restore optimal tissue length. These data suggest that longer tissue lengths induced a force suppression-like state that was 1) not additive with forskolin and 2) not associated with HSP20 phosphorylation. Further research is required to determine this length-dependent mechanism.  相似文献   

18.
The time course of changes in the hand muscle activity and the grip force before the hit of an object falling from different heights into a cup held between the thumb and the forefinger was analyzed in three variants of the experiment: (1) the subject saw the object falling; (2) the subject did not see the object falling but initiated the fall; and (3) the subject had no information on either the falling or its start. In the third variant, the muscle activity and the grip force changed in response to the object hitting the cup. In the second variant, the muscle activity and the grip force began to change 200–280 ms before the hit, this time being independent of height from which the object fell. In the first variant, the anticipatory changes began 150 ms after the object started falling and did not depend on the height of the falling within the rage 30–50 cm. If the object fell from a height of 70–105 cm, the changes in the muscle activity and the grip force began a fixed time before the object hit the cup, which did not depend on the height from which the object fell. Thus, when the object fall from small heights, the timing of the increase in the grip force was mainly determined by the moment when the object began moving; at large heights, the increase in the grip force was related to the presumed moment of the hit.  相似文献   

19.
The freeze-thaw tolerance of Saccharomyces cerevisiae was examined throughout growth in aerobic batch culture. Minimum tolerance to rapid freezing (immersion in liquid nitrogen; cooling rate, approximately 200 degrees C min-1) was associated with respirofermentative (exponential) growth on glucose. However, maximum tolerance occurred not during the stationary phase but during active respiratory growth on ethanol accumulated during respirofermentative growth on glucose. The peak in tolerance occurred several hours after entry into the respiratory growth phase and did not correspond to a transient accumulation of trehalose which occurred at the point of glucose exhaustion. Substitution of ethanol with other carbon sources which permit high levels of respiration (acetate and galactose) also induced high freeze-thaw tolerance, and the peak did not occur in cells shifted directly from fermentative growth to starvation conditions or in two respiratorily incompetent mutants. These results imply a direct link with respiration, rather than exhaustion of glucose. The role of ethanol as a cryoprotectant per se was also investigated, and under conditions of rapid freezing (cooling rate, approximately 200 degrees C min-1), ethanol demonstrated a significant cryoprotective effect. Under the same freezing conditions, glycerol had little effect at high concentrations and acted as a cryosensitizer at low concentrations. Conversely, under slow-freezing conditions (step freezing at -20, -70, and then -196 degrees C; initial cooling rate, approximately 3 degrees C min-1), glycerol acted as a cryoprotectant while ethanol lost this ability. Ethanol may thus have two effects on the cryotolerance of baker's yeast, as a respirable carbon source and as a cryoprotectant under rapid-freezing conditions.  相似文献   

20.
The maximal rate of rise in muscle force [rate of force development (RFD)] has important functional consequences as it determines the force that can be generated in the early phase of muscle contraction (0-200 ms). The present study examined the effect of resistance training on contractile RFD and efferent motor outflow ("neural drive") during maximal muscle contraction. Contractile RFD (slope of force-time curve), impulse (time-integrated force), electromyography (EMG) signal amplitude (mean average voltage), and rate of EMG rise (slope of EMG-time curve) were determined (1-kHz sampling rate) during maximal isometric muscle contraction (quadriceps femoris) in 15 male subjects before and after 14 wk of heavy-resistance strength training (38 sessions). Maximal isometric muscle strength [maximal voluntary contraction (MVC)] increased from 291.1 +/- 9.8 to 339.0 +/- 10.2 N. m after training. Contractile RFD determined within time intervals of 30, 50, 100, and 200 ms relative to onset of contraction increased from 1,601 +/- 117 to 2,020 +/- 119 (P < 0.05), 1,802 +/- 121 to 2,201 +/- 106 (P < 0.01), 1,543 +/- 83 to 1,806 +/- 69 (P < 0.01), and 1,141 +/- 45 to 1,363 +/- 44 N. m. s(-1) (P < 0.01), respectively. Corresponding increases were observed in contractile impulse (P < 0.01-0.05). When normalized relative to MVC, contractile RFD increased 15% after training (at zero to one-sixth MVC; P < 0.05). Furthermore, muscle EMG increased (P < 0.01-0.05) 22-143% (mean average voltage) and 41-106% (rate of EMG rise) in the early contraction phase (0-200 ms). In conclusion, increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号